11 CE Credits (credit only available for entire issue). SPECIAL ISSUE: Human Brain Connectivity in the Modern Era. JINS 22:2 (2016)

apa-logo_white_screenThe International Neuropsychological Society is approved by the American Psychological Association to sponsor continuing education for psychologists. The International Neuropsychological Society maintains responsibility for this program and its content.
Educational Objectives
  1. To identify and understand the primary methods by which one can examine human structural and/or functional brain connectivity.
  2. To identify and understand the primary benefits and challenges associated with the different methods used to assess human structural and functional brain connectivity.
  3. To understand relationships between normative variations in structural and/or functional connectivity and behavior.
  4. To identify the populations, brain systems, and behaviors associated with alterations in functional and structural connectivity.
  5. To describe the specificity across clinical domains of associations and the potential mechanisms by which functional and/or structural connectivity influences behavior.
  6. To describe similarities and differences in structural versus functional connectivity abnormalities across clinical populations.

Course Information
Target Audience:Intermediate
Availability:Date Available: 2016-02-17
You may obtain CE for this JINS package at any time.
Offered for CEYes
CostMembers $110
Non-Members $165
Refund PolicyThis JINS package is not eligible for refunds
CE Credits11

Co-Organizers
Deanna M. Barch, Mieke Verfaellie, and Stephen M. Rao

Introduction

Last year (2015) commemorated the 50th anniversary of Norman Geschwind’s seminal papers in Brain on “Disconnexion syndromes in animals and man” (Geschwind, 1965a, 1965b). In the past 50 years, huge advances have occurred in the tools and technologies available for the in vivo assessment of both structural and functional connectivity in the human brain, including diffusion imaging for examining structural brain connectivity, and functional magnetic resonance imaging (fMRI), electroencephalogram (EEG), and magneto-encephalogram (MEG) approaches to understanding functional brain connectivity. This has led to a dramatic increase in our understanding of the core principles of human brain connectivity and their relationship to cognitive, emotional, motor, and sensory function in health, and more recently, in clinical populations.

Facilitated by the availability of novel imaging techniques, this enhanced understanding of brain–behavior relationships reflects a fundamental conceptual shift. Basic and translational research examining task-related brain activation has been remarkably informative in terms of our understanding of the neural substrates of particular cognitive and affective processes and how these may go awry in conditions associated with impaired brain function. However, over time, it has become clear that rarely does any particular cognitive or affective process require only a single brain region, and rarely is any particular form of cognitive or behavioral dysfunction associated with disruption of only a single brain region.

Furthermore, basic neuroscience research has long made it clear that activity in any individual brain region (or any individual neuron!) is the result of inputs from and outputs to different areas of the brain. Such realizations have led to a shift in focus on neural circuits rather than on specific brain regions. More specifically, this shift has been to questions about the relationship between and among different brain regions in producing successful cognitive and affective function in health, and the ways in which abnormalities at the level of circuits contribute to the development and maintenance of specific neuropsychological impairments. The growing work on the role of brain oscillations in coordinating activity within and between neutral networks (Canavier, 2015; Ketz, Jensen, & O’Reilly, 2015; Pittman-Polletta, Kocsis, Vijayan, Whittington, & Kopell, 2015; Uhlhaas & Singer, 2015) is consistent with such hypotheses that localize neuropsychological impairments at the circuit level of function rather than within specific individual brain regions.

Aimed at highlighting this conceptual shift, this special issue has three specific goals. The first is to provide a brief overview of the current methodological and analytic tools available for understanding both normative and dysfunctional human brain connectivity. As outlined in the article by Lowe and colleagues, and to some extent in the article by Hayes and colleagues, we have seen major advances in our ability to image white matter connections in the human brain, including state-of-the art techniques that now allow researchers to follow the path of white matter connections through areas where many different fiber tracts merge, dramatically improving our ability to understand the structural basis of both short and long range communication within brain circuits.

Furthermore, as also described in the article by Lowe and colleagues, the last 30 years have also seen the emergence of methods for studying functional brain connectivity, or the covariance of spontaneous brain activity across brain regions. Originally, the concept of functional connectivity was applied to simultaneous recordings of neuronal spike trains (Gerstein & Perkel, 1969; Gerstein, Perkel, & Subramanian, 1978; Perkel, Gerstein, & Moore, 1967), which are thought to contribute to the functional connectivity observed in humans using non-invasive neuroimaging methods. A main inference of functional connectivity is that, if two regions have highly correlated neuronal activity (i.e., have high functional connectivity), then they are more likely to engage in a common set of processing mechanisms. As such, functional connectivity provides a tool for understanding what brain regions may be communicating while engaging in specific cognitive or affective processes, and therefore what brain circuits support performance and ability in different domains of cognition, emotion and/or social processing.

A major breakthrough in the development and application of functional connectivity methods for humans came in 1995, when Biswal and colleagues reported that spontaneous activity from regions in the right and left motor cortices was highly correlated even while an individual was resting (Biswal, Yetkin, Haughton, & Hyde, 1995). Of interest, this correlated activity was observed in the spontaneous low-frequency fluctuations of the BOLD signal (0.01–0.10 Hz), a frequency band that has often been discarded as noise in task-based studies, although such correlations can be seen at other frequencies as well. This work spurred a major field of exploration of what is now referred to as resting state functional connectivity. Importantly, this resting brain state activity is thought to consume a major portion of the body’s energy (~20%), despite the brain only being 2% of the body’s total mass (Fox & Raichle, 2007).

Furthermore, changes in metabolism due to engagement in a specific task are typically less than 5%. Thus, ongoing resting state activity may provide a rich source of pathology-related variability over and above changes observed in the context of task performance (Fox & Raichle, 2007). In addition, there is also robust work demonstrating that a large portion of the trial-to-trial variability in task-related activity reflects coherent and organized spontaneous fluctuations in brain activity (Fox, Snyder, Zacks, & Raichle, 2006), providing another piece of evidence that this is a meaningful source of variation in human brain function.

One of the key aspects of resting state functional connectivity that has spurred interest in this aspect of brain function is the realization that it reveals intrinsically organized networks of brain regions that are consistently functionally connected, even in the absence of task-induced perturbations in ongoing brain activity (Fox et al., 2005). This has been supported by numerous “network” mapping studies that have identified consistent, robust and reproducible networks of brain regions that show coordinated activity at rest (Buckner, Krienen, Castellanos, Diaz, & Yeo, 2011; Choi, Yeo, & Buckner, 2012; Craddock, James, Holtzheimer, Hu, & Mayberg, 2012; Gordon et al., 2016; Laird et al., 2011; Power et al., 2011; Smith et al., 2012; Wig et al., 2014; Yeo et al., 2011). These include the default mode network, the frontal parietal network, the cingulo-opercular network, and the dorsal attention network, to name a few.

Importantly, many of these networks map closely or at least partially, to networks that have been identified in task-based studies, providing validation to the functional meaningfulness of this coordinated activity (Laird et al., 2011). Such functional connectivity networks have their basis in part in structural connectivity (Betzel et al., 2014; Hermundstad et al., 2013; Horn & Blankenburg, 2015; Horn, Ostwald, Reisert, & Blankenburg, 2014; Messe, Rudrauf, Giron, & Marrelec, 2015; Miranda-Dominguez et al., 2014), but are not isomorphic with regions that show direct structural connectivity. As such, the mapping of resting state networks to known task networks has led to the hypothesis that resting state networks reflect in part organized interactions that arise from a history of co-activation over development (Power et al., 2011). Such networks are now frequently referred to as “intrinsic” connectivity networks, given that they are not dependent on performance of a particular task for identification, are present even at rest and are relatively consistent across task and environmental states. Many of the articles in this special issue focus on these networks to understand the source of pathology in various forms of brain dysfunction.

A second goal of this special issue is to provide integrative and synthetic summaries of the state-of-the field in our current understanding of brain connectivity impairments associated with both neurological and neuropsychiatric disorders. As such, the article by Hayes and colleagues reviews the current state of the literature on understanding traumatic brain injury (TBI) as a disorder of brain connectivity. Much of the work on TBI has long focused on the impairments in white matter that may occur as a result of the different traumas that can lead to TBI, with the recognition that damage to white matter connections may be occurring even when focal lesions are not found. The article by Hayes et al. provides evidence that TBI is indeed associated with white matter damage. The corpus callosum seems to be particularly vulnerable to the forces that lead to TBI, but the existing evidence suggest that the damage associated with TBI can be quite diffuse and present in many different tracts, perhaps dependent on the nature and severity of the causal trauma. This white matter damage persists even into chronic phases of TBI and has been associated with cognitive and functional impairments. Furthermore, TBI is also associated with alterations in functional connectivity, with several studies highlighting disrupted connectivity of the default mode network and its contribution to post concussion symptoms and impairments in attention focus.

The review article by Teipel and colleagues highlights the potentially important roles of both structural and functional connectivity in the evolution of Alzheimer’s disease (AD). As described in this review article, there are now numerous cross-sectional and longitudinal studies relevant to AD documenting impairments in white matter, including abnormalities in limbic tracts such as the fornix, the uncinate fasciculus and the posterior and parahippocampal fibers of the cingulum. Furthermore, there is growing evidence of abnormalities in resting state connectivity, with several studies demonstrating abnormalities of the default mode network. Abnormalities in connectivity have also been documented using coherence measures in EEG. Importantly, there is increasing evidence of links between structural and functional connectivity impairments in the default mode network in AD. As noted by Teipel et al., these findings are helping us to understand the potential etiological mechanisms of AD relevant pathology, as well as the longitudinal evolution of the disease. However, more work is needed for such findings to have direct clinical application. On the opposite end of the life span, Koyama and colleagues also argue for the importance of connectivity in understanding the developmental trajectory of children who may be at risk for the development of a range of disorders that impact brain function.

The third goal of this special issue is to present cutting-edge empirical findings on the nature and role of connectivity impairments in understanding variations in cognitive and emotional function, as well as in a range of clinical populations. To this end, the special issue includes several novel empirical findings on ways in which either structural or functional connectivity contributes to cognitive and affective function in both health and disease. Several papers provide data on the relationships between behavior and brain connectivity in healthy individuals, providing evidence for the functional significance of individual variation in brain connectivity. For example, Unger and colleagues demonstrate that individual differences in the integrity of the inferior longitudinal fasciculus (ILF) and the inferior fronto-occipital fasciculus (IFOF) predict emotion recognition performance as well as memory for emotional faces. Ly and colleagues provide evidence for a relationship between the microstructure of the fornix and both task-related connectivity and performance during episodic recognition in healthy aging, providing an interesting model of potential pathways to individual differences in memory.

The other empirical papers in this special issue demonstrate how abnormalities in structural and or functional connectivity may contribute to behavioral and affective impairments in various forms of brain pathology. For example, Putcha and colleagues provide intriguing evidence that altered coupling of the salience and default mode networks relates to cognitive function in both healthy individuals and those with Parkinson’s disease. The salience and default mode networks are typically “anti-correlated,” and it is thought that the ability to down-regulate activity of the default mode network during cognitive tasks is important for effective performance. The finding by Putcha et al. that a lack of anti-correlation was associated with impaired function in executive, memory, and psychomotor speed domains is consistent with this hypothesis.

Relatedly, Dobryakova and colleagues provide evidence that altered connectivity among frontal-parietal regions predicts impaired processing speed in multiple sclerosis. Rao and colleagues examined connectivity of hippocampus to both fronto-temporal and fronto-parietal regions among individuals with remitted major depression compared to controls during semantically cued episodic memory performance. They found evidence for impaired memory performance and altered hippocampal connectivity among the previously depressed individuals, along with evidence for disrupted relationships between hippocampal connectivity and memory.

Finally, three articles bring to bear a graph theoretic approach to understanding how alterations in neural networks contribute to the development of brain pathology and associated impairments in cognitive function. Graph theory is a branch of mathematics that provides algorithms for determining metrics that characterize networks at both global and local levels of function. One major advantage of graph theory is its flexibility; algorithms can be applied to functional connectivity data, structural connectivity data, as well as to data obtained using MEG, EEG, or fMRI, allowing for a convergence of findings across differing modalities.

Furthermore, network science allows for the characterization of dynamic processes through single metrics, arguably providing more powerful and parsimonious descriptions of heterogeneous data than the previously discussed approaches. Although much work is needed to further validate the use of graph theory for interpreting brain connectivity data, network science represents an exciting new field of research that is increasingly showing associations between network metrics and behavior, as well as abnormalities in networks metrics in individuals with psychiatric and neurological disorders.

Yeo and colleagues use the power of a graph theory approach to show that the structural brain networks of individuals with schizophrenia are characterized by longer characteristic path lengths (suggesting a longer transit time for information) and reduced overall connectivity. These graph theory metrics predicted overall cognitive ability in healthy individuals as well as in individuals with schizophrenia, and the overall connectivity reduction mediated the relationship between diagnosis and overall cognitive ability.

Furthermore, Yeo et al. found that a genetic measure reflecting mutation load predicted both longer characteristic path length and global cognitive ability. Sedeno and colleagues also took a graph theory approach to understanding the mechanisms that might contribute to cognitive and social impairments in fronto-temporal dementia. Used resting state functional connectivity, they showed decreased network centrality, a measure of the importance of a node or brain region’s role in a network, in the fronto-temporal–insular network. Furthermore, this network centrality was associated with social cognition and executive function in individuals with fronto-temporal dementia and healthy individuals. Finally, Han and colleagues examined networks associated with goal-directed behavior in individuals with chronic TBI. They observed markedly disrupted long-range interhemispheric and between-network connectivity between the default mode network, the dorsal attention network, and the frontoparietal control network, with as result reduced global and local efficiency.

In summary, we believe that the articles presented in this special issue provide an important entryway into the burgeoning literature on the role of neural networks in cognition and the nature of alterations in circuit level structural and functional connectivity associated with brain pathology. As noted in many of the articles, this field continues to evolve as both the acquisition and analyses methods develop and expand, but the existing evidence points to the functional relevance of these networks to understanding variations in normal development and the critical importance of their structural and functional brain disruption as a means of understanding pathophysiology and potential pathways for intervention or even prevention.


Individual Titles, Authors, and Articles:

Modern Methods for Interrogating the Human Connectome
Author(s)
  • Mark J. Lowe | Imaging Institute, Cleveland Clinic, Cleveland, Ohio
  • Ken E. Sakaie | Imaging Institute, Cleveland Clinic, Cleveland, Ohio
  • Erik B. Beall | Imaging Institute, Cleveland Clinic, Cleveland, Ohio
  • Vince D. Calhoun | The Mind Research Network, Albuquerque, New Mexico, Department of ECE, University of New Mexico, Albuquerque, New Mexico
  • David A. Bridwell | The Mind Research Network, Albuquerque, New Mexico, Department of ECE, University of New Mexico, Albuquerque, New Mexico
  • Mikail Rubinov | Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
  • Stephen M. Rao | Neurological Institute, Cleveland Clinic, Cleveland, Ohio

Correspondence
E-mail address | raos2@ccf.org

Disclosures
The authors do not report conflicts of interest related to this manuscript.

Abstract
Objectives:

Connectionist theories of brain function took hold with the seminal contributions of Norman Geschwind a half century ago. Modern neuroimaging techniques have expanded the scientific interest in the study of brain connectivity to include the intact as well as disordered brain.

Methods:

In this review, we describe the most common techniques used to measure functional and structural connectivity, including resting state functional MRI, diffusion MRI, and electroencephalography and magnetoencephalography coherence. We also review the most common analytical approaches used for examining brain interconnectivity associated with these various imaging methods.

Results:

This review presents a critical analysis of the assumptions, as well as methodological limitations, of each imaging and analysis approach.

Conclusions:

The overall goal of this review is to provide the reader with an introduction to evaluating the scientific methods underlying investigations that probe the human connectome. (JINS, 2016,22, 105–119)

Bibliography
  1. Abou-Elseoud, A., Starck, T., Remes, J., Nikkinen, J., Tervonen, O., & Kiviniemi, V. (2010). The effect of model order selection in group PICA. Human Brain Mapping, 31, 1207–1216. Google Scholar  PubMed 
  2. Achard, S., Salvador, R., Whitcher, B., Suckling, J., & Bullmore, E. (2006). A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. The Journal of Neuroscience, 26(1), 63–72. CrossRef  Google Scholar 
  3. Alexander-Bloch, A., Giedd, J.N., & Bullmore, E. (2013). Imaging structural co-variance between human brain regions. [Review]. Nature Reviews Neuroscience, 14(5), 322–336. CrossRef  Google Scholar 
  4. Allen, E.A., Damaraju, E., Plis, S.M., Erhardt, E.B., Eichele, T., & Calhoun, V.D. (2014). Tracking Whole-brain connectivity dynamics in the resting state. Cerebral Cortex, 24(3), 663–676. CrossRef  Google Scholar  PubMed 
  5. Allen, E.A., Erhardt, E.B., Damaraju, E., Gruner, W., Segall, J.M., Silva, R.F., & Calhoun, V.D. (2011). A baseline for the multivariate comparison of resting-state networks. Frontiers in Systems Neuroscience, 5, 2. CrossRef  Google Scholar  PubMed 
  6. Amunts, K., Lepage, C., Borgeat, L., Mohlberg, H., Dickscheid, T., Rousseau, M.-É., & Evans, A.C. (2013). BigBrain: An ultrahigh-resolution 3D human brain model. Science, 340(6139), 1472–1475. CrossRef  Google Scholar  PubMed 
  7. Assaf, Y., Blumenfeld-Katzir, T., Yovel, Y., & Basser, P.J. (2008). AxCaliber: A method for measuring axon diameter distribution from diffusion MRI. Magnetic Resonance in Medicine, 59(6), 1347–1354. CrossRef  Google Scholar  PubMed 
  8. Assemlal, H.E., Tschumperle, D., Brun, L., & Siddiqi, K. (2011). Recent advances in diffusion MRI modeling: Angular and radial reconstruction. Medical Image Analysis, 15(4), 369–396. CrossRef  Google Scholar  PubMed 
  9. Barazany, D., Basser, P.J., & Assaf, Y. (2009). In vivo measurement of axon diameter distribution in the corpus callosum of rat brain. Brain, 132(Pt 5), 1210–1220. CrossRef  Google Scholar 
  10. Basser, P.J., Mattiello, J., & LeBihan, D. (1994). MR diffusion tensor spectroscopy and imaging. Biophysical Journal, 66(1), 259–267. CrossRef  Google Scholar 
  11. Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., & Aldroubi, A. (2000). In vivo fiber tractography using DT-MRI data. Magnetic Resonance in Medicine, 44(4), 625–632.3.0.CO;2-O>CrossRef Google Scholar 
  12. Bassett, D.S., & Bullmore, E. (2006). Small-world brain networks. Neuroscientist, 12(6), 512–523. CrossRef  Google Scholar  PubMed 
  13. Bassett, D.S., Meyer-Lindenberg, A., Achard, S., Duke, T., & Bullmore, E. (2006). Adaptive reconfiguration of fractal small-world human brain functional networks. Proceedings of the National Academy of Sciences of the United States of America, 103(51), 19518–19523. CrossRef  Google Scholar 
  14. Beall, E.B., & Lowe, M.J. (2007). Isolating physiologic noise sources with independently determined spatial measures. Neuroimage, 37(4), 1286–1300. CrossRef  Google Scholar 
  15. Beall, E.B., & Lowe, M.J. (2010). The non-separability of physiologic noise in functional connectivity MRI with spatial ICA at 3T. Journal of Neuroscience Methods, 191(2), 263–276. CrossRef  Google Scholar  PubMed 
  16. Beall, E.B., & Lowe, M.J. (2014). SimPACE: Generating simulated motion corrupted BOLD data with synthetic-navigated acquisition for the development and evaluation of SLOMOCO: A new, highly effective slicewise motion correction. Neuroimage, 101, 21–34. CrossRef  Google Scholar  PubMed 
  17. Beckmann, C.F., & Smith, S.M. (2005). Tensorial extensions of independent component analysis for multisubject FMRI analysis. Neuroimage, 25(1), 294–311. CrossRef  Google Scholar  PubMed 
  18. Behrens, T.E., Berg, H.J., Jbabdi, S., Rushworth, M.F., & Woolrich, M.W. (2007). Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? Neuroimage, 34(1), 144–155. CrossRef  Google Scholar  PubMed 
  19. Behrens, T.E., & Sporns, O. (2012). Human connectomics. Current Opinion in Neurobiology, 22(1), 144–153. CrossRef  Google Scholar  PubMed 
  20. Bendat, J.S., & Piersol, A.G. (2000). Random data. Analysis and measurement procedures (3rd ed.). New York: John Wiley & Sons. Google Scholar 
  21. Biswal, B.B., & Hudetz, A.G. (1996). Synchronous oscillations in cerebrocortical capillary red blood cell velocity after nitric oxide synthase inhibition. Microvascular Research, 52(1), 1–12. CrossRef  Google Scholar  PubMed 
  22. Biswal, B.B., Hudetz, A.G., Yetkin, F.Z., Haughton, V.M., & Hyde, J.S. (1997). Hypercapnia reversibly suppresses low-frequency fluctuations in the human motor cortex during rest using echo-planar MRI. Journal of Cerebral Blood Flow & Metabolism, 17(3), 301–308. CrossRef  Google Scholar  PubMed 
  23. Biswal, B.B., Van Kylen, J., & Hyde, J.S. (1997). Simultaneous assessment of flow and BOLD signals in resting-state. NMR in Biomedicine, 10(4-5), 165–170.3.0.CO;2-7>CrossRef Google Scholar  PubMed 
  24. Biswal, B.B., Yetkin, F.Z., Haughton, V.M., & Hyde, J.S. (1995). Functional connectivity in the motor cortex of resting human brain. Magnetic Resonance in Medicine, 34(4), 537–541. CrossRef  Google Scholar  PubMed 
  25. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D.U. (2006). Complex networks: Structure and dynamics. Physics Reports, 424(4–5), 175–308. CrossRef  Google Scholar 
  26. Boubela, R.N., Kalcher, K., Huf, W., Kronnerwetter, C., Filzmoser, P., & Moser, E. (2013). Beyond noise: Using temporal ICA to extract meaningful information from high-frequency fMRI signal fluctuations during rest. Frontiers in Human Neuroscience, 7, 168. CrossRef  Google Scholar 
  27. Brookes, M.J., Hale, J.R., Zumer, J.M., Stevenson, C.M., Francis, S.T., Barnes, G.R., & Nagarajan, S.S. (2011). Measuring functional connectivity using MEG: Methodology and comparison with fcMRI. Neuroimage, 56(3), 1082–1104. CrossRef  Google Scholar  PubMed 
  28. Budde, M.D., Kim, J.H., Liang, H.F., Schmidt, R.E., Russell, J.H., Cross, A.H., && Song, S.K. (2007). Toward accurate diagnosis of white matter pathology using diffusion tensor imaging. Magnetic Resonance in Medicine, 57(4), 688–695. CrossRef  Google Scholar  PubMed 
  29. Bullmore, E.T., Brammer, M.J., Rabe-Hesketh, S., Curtis, V.A., Morris, R.G., Williams, S.C., & McGuire, P.K. (1999). Methods for diagnosis and treatment of stimulus-correlated motion in generic brain activation studies using fMRI. Human Brain Mapping, 7(1), 38–48.3.0.CO;2-Q>CrossRef Google Scholar 
  30. Bullmore, E.T., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186–198. CrossRef  Google Scholar  PubMed 
  31. Buzsaki, G. (2006). Rhythms of the brain. New York: Oxford University Press. CrossRef  Google Scholar 
  32. Calhoun, V.D., & Adali, T. (2012). Multi-subject independent component analysis of fMRI: A decade of intrinsic networks, default mode, and neurodiagnostic discovery. IEEE Reviews in Biomedical Engineering, 5, 60–72. CrossRef  Google Scholar 
  33. Calhoun, V.D., Adali, T., Pearlson, G.D., & Pekar, J.J. (2001). A method for making group inferences from functional MRI data using independent component analysis. Human Brain Mapping, 14(3), 140–151. CrossRef  Google Scholar  PubMed 
  34. Calhoun, V.D., & Allen, E. (2013). Extracting intrinsic functional networks with feature-based group independent component analysis. Psychometrika, 78(2), 243–259. CrossRef  Google Scholar  PubMed 
  35. Calhoun, V.D., Kiehl, K.A., & Pearlson, G.D. (2008). Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks. Human Brain Mapping, 29(7), 828–838. CrossRef  Google Scholar 
  36. Calhoun, V.D., Miller, R., Pearlson, G., & Adalı, T. (2014). The chronnectome: Time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron, 84(2), 262–274. CrossRef  Google Scholar  PubMed 
  37. Catani, M., Howard, R.J., Pajevic, S., & Jones, D.K. (2002). Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage, 17(1), 77–94. CrossRef  Google Scholar 
  38. Chang, C., & Glover, G.H. (2010). Time–frequency dynamics of resting-state brain connectivity measured with fMRI. Neuroimage, 50(1), 81–98. CrossRef  Google Scholar  PubMed 
  39. Cohen, D., & Cuffin, B.N. (1983). Demonstration of useful differences between magnetoencephalogram and electroencephalogram. Electroencephalography and Clinical Neurophysiology, 56(1), 38–51. CrossRef  Google Scholar  PubMed 
  40. Cole, D.M., Smith, S.M., & Beckmann, C.F. (2010). Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Frontiers in Systems Neuroscience, 4, 8. Google Scholar  PubMed 
  41. Colizza, V., Flammini, A., Serrano, M.A., & Vespignani, A. (2006). Detecting rich-club ordering in complex networks. [10.1038/nphys209]. Nature Physics, 2(2), 110–115. CrossRef  Google Scholar 
  42. Conturo, T.E., Lori, N.F., Cull, T.S., Akbudak, E., Snyder, A.Z., Shimony, J.S., & Raichle, M.E. (1999). Tracking neuronal fiber pathways in the living human brain. Proceedings of the National Academy of Sciences of the United States of America, 96(18), 10422–10427. CrossRef  Google Scholar 
  43. Cooper, R., Crow, H.J., Walter, W.G., & Winter, A.L. (1966). Regional control of cerebral vascular reactivity and oxygen supply in man. Brain Research, 3(2), 174–191. CrossRef  Google Scholar  PubMed 
  44. Cordes, D., Haughton, V.M., Arfanakis, K., Carew, J.D., Turski, P.A., Moritz, C.H., & Meyerand, M.E. (2001). Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. AJNR American Journal of Neuroradiology, 22(7), 1326–1333. Google Scholar 
  45. Cordes, D., Haughton, V.M., Arfanakis, K., Wendt, G.J., Turski, P.A., Moritz, C.H., & Meyerand, M.E. (2000). Mapping functionally related regions of brain with functional connectivity MR imaging. AJNR American Journal of Neuroradiology, 21(9), 1636–1644. Google Scholar 
  46. Cordes, D., Nandy, R.R., Schafer, S., & Wager, T.D. (2014). Characterization and reduction of cardiac- and respiratory-induced noise as a function of the sampling rate (TR) in fMRI. Neuroimage, 89, 314–330. CrossRef  Google Scholar 
  47. Cox, R.W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29(3), 162–173. CrossRef  Google Scholar  PubMed 
  48. Craddock, R.C., Jbabdi, S., Yan, C.-G., Vogelstein, J.T., Castellanos, F.X., Di Martino, A., & Milham, M.P. (2013). Imaging human connectomes at the macroscale. Nature Methods, 10(6), 524–539. CrossRef  Google Scholar 
  49. Crossley, N.A., Mechelli, A., Scott, J., Carletti, F., Fox, P.T., McGuire, P., && Bullmore, E.T. (2014). The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain, 137(Pt 8), 2382–2395. CrossRef  Google Scholar  PubMed 
  50. Csermely, P., London, A., Wu, L.-Y., & Uzzi, B. (2013). Structure and dynamics of core/periphery networks. Journal of Complex Networks, 1(2), 93–123. CrossRef  Google Scholar 
  51. Damaraju, E., Allen, E.A., Belger, A., Ford, J.M., McEwen, S., Mathalon, D.H., & Calhoun, V.D. (2014). Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia. Neuroimage. Clinical, 5, 298–308. CrossRef  Google Scholar 
  52. Dora, E., & Kovach, A.G. (1981). Metabolic and vascular volume oscillations in the cat brain cortex. Acta Physiology of the Academy of Science of Hungary, 57(3), 261–275. Google Scholar  PubMed 
  53. Douaud, G., Jbabdi, S., Behrens, T.E., Menke, R.A., Gass, A., Monsch, A.U., & Smith, S. (2011). DTI measures in crossing-fibre areas: Increased diffusion anisotropy reveals early white matter alteration in MCI and mild Alzheimer’s disease. Neuroimage, 55(3), 880–890. CrossRef  Google Scholar  PubMed 
  54. Eguiluz, V.M., Chialvo, D.R., Cecchi, G.A., Baliki, M., & Apkarian, A.V. (2005). Scale-free brain functional networks. Physical Review Letters, 94(1), 018102. CrossRef  Google Scholar  PubMed 
  55. Eichele, T., Calhoun, V.D., & Debener, S. (2009). Mining EEG–fMRI using independent component analysis. International Journal of Psychophysiology, 73(1), 53–61. CrossRef  Google Scholar  PubMed 
  56. Engel, A.K., Fries, P., & Singer, W. (2001). Dynamic predictions: Oscillations and synchrony in top-down processing. Nature Reviews Neuroscience, 2, 704–716. CrossRef  Google Scholar  PubMed 
  57. Erhardt, E.B., Rachakonda, S., Bedrick, E.J., Allen, E.A., Adali, T., & Calhoun, V.D. (2011). Comparison of multi-subject ICA methods for analysis of fMRI data. Human Brain Mapping, 32(12), 2075–2095. CrossRef  Google Scholar  PubMed 
  58. Esposito, F., Scarabino, T., Hyvarinen, A., Himberg, J., Formisano, E., Comani, S., & Salle, F. (2005). Independent component analysis of fMRI group studies by self-organizing clustering. Neuroimage, 25(1), 193–205. CrossRef  Google Scholar  PubMed 
  59. Evans, A.C. (2013). Networks of anatomical covariance. Neuroimage, 80, 489–504. CrossRef  Google Scholar 
  60. Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3-5), 75–174. CrossRef  Google Scholar 
  61. Fox, M.D., & Raichle, M.E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8(9), 700–711. CrossRef  Google Scholar  PubMed 
  62. Friston, K.J., Frith, C.D., Liddle, P.F., & Frackowiak, R.S. (1993). Functional connectivity: The principal-component analysis of large (PET) data sets. Journal of Cerebral Blood Flow & Metabolism, 13(1), 5–14. CrossRef  Google Scholar 
  63. Geschwind, N. (1965a). Disconnexion syndromes in animals and man. I. Brain, 88(2), 237–294. CrossRef  Google Scholar 
  64. Geschwind, N. (1965b). Disconnexion syndromes in animals and man. II. Brain, 88(3), 585–644. CrossRef  Google Scholar  PubMed 
  65. Girvan, M., & Newman, M.E.J. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America, 99(12), 7821–7826. CrossRef  Google Scholar  PubMed 
  66. Glover, G.H., Li, T.Q., & Ress, D. (2000). Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magnetic Resonance in Medicine, 44(1), 162–167.3.0.CO;2-E>CrossRef Google Scholar  PubMed 
  67. Golanov, E.V., Yamamoto, S., & Resi, D.J. (1994). Spontaneous waves of cerebral blood flow associated with patterns of electrocortical activity. American Journal of Physiology, 266, R204–R214. Google Scholar  PubMed 
  68. Gong, G., He, Y., Concha, L., Lebel, C., Gross, D.W., Evans, A.C., &&Beaulieu, C. (2009). Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cerebral Cortex, 19(3), 524–536. CrossRef  Google Scholar 
  69. Greicius, M.D., Krasnow, B., Reiss, A.L., & Menon, V. (2003). Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100(1), 253–258. CrossRef  Google Scholar  PubMed 
  70. Guo, Y., & Pagnoni, G. (2008). A unified framework for group independent component analysis for multi-subject fMRI data. Neuroimage, 42(3), 1078–1093. CrossRef  Google Scholar 
  71. Gusnard, D.A., Akbudak, E., Shulman, G.L., & Raichle, M.E. (2001). Medial prefrontal cortex and self-referential mental activity: Relation to a default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(7), 4259–4264. CrossRef  Google Scholar 
  72. Hagmann, P., Cammoun, L., Gigandet, X., Gerhard, S., Grant, P.E., Wedeen, V.J., & Sporns, O. (2010). MR connectomics: Principles and challenges. Journal of Neuroscience Methods, 194(1), 34–45. CrossRef  Google Scholar 
  73. Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Wedeen, V.J., && Sporns, O. (2008). Mapping the structural core of human cerebral cortex. PLoS Biology, 6(7), e159. CrossRef  Google Scholar 
  74. Hagmann, P., Kurant, M., Gigandet, X., Thiran, P., Wedeen, V.J., Meuli, R., && Thiran, J.P. (2007). Mapping human whole-brain structural networks with diffusion MRI. PLoS One, 2(7), e597. CrossRef  Google Scholar  PubMed 
  75. Halsey, J.H. Jr., & McFarland, S. (1974). Oxygen cycles and metabolic autoregulation. Stroke, 5(2), 219–225. CrossRef  Google Scholar  PubMed 
  76. Harrington, D.L., Rubinov, M., Durgerian, S., Mourany, L., Reece, C., Koenig, K., & Rao, S.M. (2015). Network topology and functional connectivity disturbances precede the onset of Huntington’s disease. Brain, 138(Pt 8), 2332–2346. CrossRef  Google Scholar  PubMed 
  77. He, Y., Chen, Z.J., & Evans, A.C. (2007). Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cerebral Cortex, 17(10), 2407–2419. CrossRef  Google Scholar  PubMed 
  78. Heinrichs, H.R., & Zakzanis, K.K. (1998). Neurocognitive deficit in schizophrenia: A quantitative review of the evidence. Neuropsychology, 12(3), 426–445. CrossRef  Google Scholar 
  79. Hudetz, A.G., Smith, J.J., Lee, J.G., Bosnjak, Z.J., & Kampine, J.P. (1995). Modification of cerebral laser-Doppler flow oscillations by halothane, PCO2, and nitric oxide synthase blockade. American Journal of Physiology, 269(1 Pt 2), H114–H120. Google Scholar  PubMed 
  80. Humphries, M.D., & Gurney, K. (2008). Network ‘Small-World-Ness’: A quantitative method for determining canonical network equivalence. PLoS One, 3(4), e0002051. CrossRef  Google Scholar  PubMed 
  81. Hutchison, R.M., Womelsdorf, T., Allen, E.A., Bandettini, P.A., Calhoun, V.D., Corbetta, M., & Chang, C. (2013). Dynamic functional connectivity: Promise, issues, and interpretations. Neuroimage, 80, 360–378. CrossRef  Google Scholar  PubMed 
  82. Hyvarinen, A., Karhunen, J., & Oja, E. (2001). Independent component analysis. New York: John Wiley & Sons. CrossRef  Google Scholar  PubMed 
  83. Insel, T.R., Landis, S.C., & Collins, F.S. (2013). Research priorities. The NIH BRAIN Initiative. Science, 340(6133), 687–688. CrossRef  Google Scholar  PubMed 
  84. Iturria-Medina, Y., Sotero, R.C., Canales-Rodriguez, E.J., Aleman-Gomez, Y., & Melie-Garcia, L. (2008). Studying the human brain anatomical network via diffusion-weighted MRI and Graph Theory. Neuroimage, 40(3), 1064–1076. CrossRef  Google Scholar  PubMed 
  85. Jafri, M.J., Pearlson, G.D., Stevens, M., & Calhoun, V.D. (2008). A method for functional network connectivity among spatially independent resting-state components in schizophrenia. Neuroimage, 39(4), 1666–1681. CrossRef  Google Scholar 
  86. Johansen-Berg, H., & Behrens, T.E.J. (2009). Diffusion MRI: From quantitative measurement to in-vivo neuroanatomy(1st ed.). Boston: Elsevier/Academic Press. Google Scholar 
  87. Jones, D.K. (2004). The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: A Monte Carlo study. Magnetic Resonance in Medicine, 51(4), 807–815. CrossRef  Google Scholar  PubMed 
  88. Jones, D.K. (2010). Diffusion MRI: Theory, methods, and applications. New York: Oxford University Press. Google Scholar 
  89. Kalcher, K., Boubela, R.N., Huf, W., Bartova, L., Kronnerwetter, C., Derntl, B., & Moser, E. (2014). The spectral diversity of resting-state fluctuations in the human brain. PLoS One, 9(4), e93375. CrossRef  Google Scholar  PubMed 
  90. Kenet, T., Bibitchkov, D., Tsodyks, M., Grinvald, A., & Arieli, A. (2003). Spontaneously emerging cortical representations of visual attributes. Nature, 425(6961), 954–956. CrossRef  Google Scholar  PubMed 
  91. Kopell, N.J., Gritton, H.J., Whittington, M.A., & Kramer, M.A. (2014). Beyond the connectome: The dynome. Neuron, 83(6), 1319–1328. CrossRef  Google Scholar  PubMed 
  92. Laufs, H., Krakow, K., Sterzer, P., Eger, E., Beyerle, A., Salek-Haddadi, A., && Kleinschmidt, A. (2003). Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proceedings of the National Academy of Sciences of the United States of America, 100(19), 11053–11058. CrossRef  Google Scholar  PubMed 
  93. Leonardi, N., Shirer, W.R., Greicius, l.D., & Van De Ville, D. (2014). Disentangling dynamic networks: Separated and joint expressions of functional connectivity patterns in time: Disentangling dynamic networks. Human Brain Mapping, 35(12), 5984–5995. CrossRef  Google Scholar  PubMed 
  94. Leopold, D.A., Murayama, Y., & Logothetis, N.K. (2003). Very slow activity fluctuations in monkey visual cortex: Implications for functional brain imaging. Cerebral Cortex, 13(4), 422–433. CrossRef  Google Scholar 
  95. Liu, Y., Liang, M., Zhou, Y., He, Y., Hao, Y., Song, M., & Jiang, T. (2008). Disrupted small-world networks in schiz+ophrenia. Brain, 131(Pt 4), 945–961. CrossRef  Google Scholar 
  96. Logothetis, N.K. (2002). The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Philosophical Transactions of the Royal Society B: Biological Sciences, 357(1424), 1003–1037. CrossRef  Google Scholar  PubMed 
  97. Logothetis, N.K., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature, 412(6843), 150–157. CrossRef  Google Scholar  PubMed 
  98. Lowe, M.J., Beall, E.B., Sakaie, K.E., Koenig, K.A., Stone, L., Marrie, R.A., && Phillips, M.D. (2008). Resting state sensorimotor functional connectivity in multiple sclerosis inversely correlates with transcallosal motor pathway transverse diffusivity. Human Brain Mapping, 29(7), 818–827. CrossRef  Google Scholar  PubMed 
  99. Lowe, M.J., Dzemidzic, M., Lurito, J.T., Mathews, V.P., & Phillips, M.D. (2000). Correlations in low-frequency BOLD fluctuations reflect cortico-cortical connections. Neuroimage, 12(5), 582–587. CrossRef  Google Scholar  PubMed 
  100. Lowe, M.J., Horenstein, C., Hirsch, J.G., Marrie, R.A., Stone, L., Bhattacharyya, P.K., et al. (2006). Functional pathway-defined MRI diffusion measures reveal increased transverse diffusivity of water in multiple sclerosis. Neuroimage, 32(3), 1127–1133. CrossRef  Google Scholar  PubMed 
  101. Lowe, M.J., Koenig, K.A., Beall, E.B., Sakaie, K., Stone, L., Bermel, R., && Phillips, M.D. (2014). Anatomic connectivity assessed using pathway radial diffusivity is related to functional connectivity in monosynaptic pathways. Brain Connectivity, 4(7), 558–565. CrossRef  Google Scholar  PubMed 
  102. Lowe, M.J., Mock, B.J., & Sorenson, J.A. (1998). Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage, 7(2), 119–132. CrossRef  Google Scholar  PubMed 
  103. Lowe, M.J., & & Russell, D.P. (1999). Treatment of baseline drifts in fMRI time series analysis. Journal of Computer Assisted Tomography, 23(3), 463–473. CrossRef  Google Scholar  PubMed 
  104. Lowe, M.J., Rutecki, P., Woodard, A., Turski, P., & Sorenson, J.A. (1997). Auditory cortex fMRI noise correlations in callosal agenesis. Human Brain Mapping, 5(4), S194. Google Scholar 
  105. Lowe, M.J., & Sorenson, J.A. (1997). Spatially filtering functional magnetic resonance imaging data. Magnetic Resonance in Medicine, 37(5), 723–729. CrossRef  Google Scholar 
  106. Makeig, S., Debener, S., Onton, J., & Delorme, A. (2004). Mining event-related brain dynamics. Trends in Cognitive Sciences, 8(5), 204–210. CrossRef  Google Scholar 
  107. McKeown, M.J., Makeig, S., Brown, G.G., Jung, T.P., Kindermann, S.S., Bell, A.J., && Sejnowski, T.J. (1998). Analysis of fMRI data by blind separation into independent spatial components. Human Brain Mapping, 6, 160–629.3.0.CO;2-1>CrossRef Google Scholar 
  108. Mesholam-Gately, R.I., Giuliano, A.J., Goff, K.P., Faraone, S.V., & Seidman, L.J. (2009). Neurocognition in first-episode schizophrenia: A meta-analytic review. Neurophysiology, 23(3), 315–336. Google Scholar 
  109. Meunier, D., Lambiotte, R., & Bullmore, E.T. (2010). Modular and hierarchically modular organization of brain networks. Frontiers in Neuroscience, 4, 200. CrossRef  Google Scholar  PubMed 
  110. Michel, C.M., Murray, M.M., Lantz, G., Gonzalez, S., Spinelli, L., & Grave de Peralta, R. (2004). EEG source imaging. Clinical Neurophysiology, 115(10), 2195–2222. CrossRef  Google Scholar  PubMed 
  111. Mori, S., Crain, B.J., Chacko, V.P., & van Zijl, P.C. (1999). Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Annals of Neurology, 45(2), 265–269.3.0.CO;2-3>CrossRef Google Scholar  PubMed 
  112. Moskalenko, Y.E. (1980). Biophysical aspects of cerebral circulation. Oxford: Pergamon Press. Google Scholar 
  113. Newman, M. (2003). The structure and function of complex networks. SIAM Review, 45(2), 167–256. CrossRef  Google Scholar 
  114. Newman, M. (2010). Networks: An introduction. Oxford: Oxford University Press. CrossRef  Google Scholar 
  115. Nunez, P.L., Silberstein, R.B., Shi, Z., Carpenter, M.R., Srinivasan, R., Tucker, D.M., & Wijesinghe, R.S. (1999). EEG coherency II: Experimental comparisons of multiple measures. Clinical Neurophysiology, 110(3), 469–486. CrossRef  Google Scholar 
  116. Nunez, P.L., & Srinivasan, R. (2006). Electric fields of the brain: The neurophysics of EEG (2nd ed.). New York: Oxford University Press. CrossRef  Google Scholar 
  117. Nunez, P.L., Srinivasan, R., Westdorp, A.F., Wijesinghe, R.S., Tucker, D.M., Silberstein, R. B., && Cadusch, P. J. (1997). EEG coherency: I: Statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalography and Clinical Neurophysiology, 103(5), 499–515. CrossRef  Google Scholar 
  118. Obrig, H., Neufang, M., Wenzel, R., Kohl, M., Steinbrink, J., Einhaupl, K., et al. (2000). Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults. Neuroimage, 12(6), 623–639. CrossRef  Google Scholar 
  119. Oguz, I., Farzinfar, M., Matsui, J., Budin, F., Liu, Z., Gerig, G., & Styner, M. (2014). DTIPrep: Quality control of diffusion-weighted images. Frontiers in Neuroinformatics, 8, 4. CrossRef  Google Scholar  PubMed 
  120. Peltier, S.J., & Noll, D.C. (2002). T(2)(*) dependence of low frequency functional connectivity. Neuroimage, 16(4), 985–992. CrossRef  Google Scholar 
  121. Perlbarg, V., Bellec, P., Anton, J.L., Pelegrini-Issac, M., Doyon, J., & Benali, H. (2007). CORSICA: Correction of structured noise in fMRI by automatic identification of ICA components. Magnetic Resonance Imaging, 25(1), 35–46. CrossRef  Google Scholar  PubMed 
  122. Pierpaoli, C., Barnett, A., Pajevic, S., Chen, R., Penix, L.R., Virta, A., && Basser, P. (2001). Water diffusion changes in Wallerian degeneration and their dependence on white matter architecture. Neuroimage, 13(6 Pt 1), 1174–1185. CrossRef  Google Scholar 
  123. Power, J.D., Mitra, A., Laumann, T.O., Snyder, A.Z., Schlaggar, B.L., & Petersen, S.E. (2012). Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage, 84C, 320–341. Google Scholar 
  124. Power, J.D., Schlaggar, B.L., & Petersen, S.E. (2015). Recent progress and outstanding issues in motion correction in resting state fMRI. Neuroimage, 105, 536–551. CrossRef  Google Scholar 
  125. Press, W., Teukolsky, S., Vetterling, W., & Flannery, B. (1993). Numerical recipes in C: The art of scientific computing. Cambridge: Cambridge University Press. Google Scholar 
  126. Pruim, R.H., Mennes, M., Buitelaar, J.K., & Beckmann, C.F. (2015). Evaluation of ICA-AROMA and alternative strategies for motion artifact removal in resting state fMRI. Neuroimage, 112, 278–287. CrossRef  Google Scholar  PubMed 
  127. Quigley, M., Cordes, D., Turski, P., Moritz, C., Haughton, V., Seth, R., &&Meyerand, M.E. (2003). Role of the corpus callosum in functional connectivity. AJNR American Journal of Neuroradiology, 24(2), 208–212. Google Scholar  PubMed 
  128. Raichle, M.E., MacLeod, A. M., Snyder, A. Z., Powers, W.J., Gusnard, D.A., & Shulman, G.L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 676–682. CrossRef  Google Scholar  PubMed 
  129. Rashid, B., Damaraju, E., Pearlson, G.D., & Calhoun, V.D. (2014). Dynamic connectivity states estimated from resting fMRI Identify differences among Schizophrenia, bipolar disorder, and healthy control subjects. Frontiers in Human Neuroscience, 8, 897. CrossRef  Google Scholar  PubMed 
  130. Rubinov, M., & Bullmore, E. (2013). Fledgling pathoconnectomics of psychiatric disorders. Trends in Cognitive Sciences, 17(12), 641–647. CrossRef  Google Scholar  PubMed 
  131. Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. Neuroimage, 52(3), 1059–1069. CrossRef  Google Scholar  PubMed 
  132. Rubinov, M., & Sporns, O. (2011). Weight-conserving characterization of complex functional brain networks. Neuroimage, 56(4), 2068–2079. CrossRef  Google Scholar  PubMed 
  133. Sakoğlu, Ü., Pearlson, G.D., Kiehl, K.A., Wang, Y.M., Michael, A.M., & Calhoun, V.D. (2010). A method for evaluating dynamic functional network connectivity and task-modulation: Application to schizophrenia. Magnetic Resonance Materials in Physics, Biology and Medicine, 23(5-6), 351–366. CrossRef  Google Scholar 
  134. Schmithorst, V.J., & Holland, S.K. (2004). Comparison of three methods for generating group statistical inferences from independent component analysis of functional magnetic resonance imaging data. Journal of Magnetic Resonance Imaging, 19(3), 365–368. CrossRef  Google Scholar  PubMed 
  135. Schoffelen, J.-M., & Gross, J. (2009). Source connectivity analysis with MEG and EEG. Human Brain Mapping, 30(6), 1857–1865. CrossRef  Google Scholar  PubMed 
  136. Seghier, M.L., & Friston, K.J. (2013). Network discovery with large DCMs. Neuroimage, 68(C), 181–191. CrossRef  Google Scholar 
  137. Siegel, M., Donner, T.H., & Engel, A.K. (2012). Spectral fingerprints of large-scale neuronal interactions. Nature Reviews Neuroscience, 12, 121–134. Google Scholar 
  138. Skare, S., & Andersson, J.L. (2001). On the effects of gating in diffusion imaging of the brain using single shot EPI. Magnetic Resonance in Medicine, 19(8), 1125–1128. Google Scholar 
  139. Smith, S.M., Fox, P.T., Miller, K.L., Glahn, D.C., Fox, P.M., Mackay, C.E., & Beckmann, C.F. (2009). Correspondence of the brain’s functional architecture during activation and rest. Proceedings of the National Academy of Sciences of the United States of America, 106(31), 13040–13045. CrossRef  Google Scholar 
  140. Smith, S.M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T.E., Mackay, C.E., & Behrens, T.E. (2006). Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. Neuroimage, 31(4), 1487–1505. CrossRef  Google Scholar  PubMed 
  141. Smith, S.M., Miller, K.L., Salimi-Khorshidi, G., Webster, M., Beckmann, C.F., Nichols, T.E., & Woolrich, M.W. (2011). Network modelling methods for FMRI. Neuroimage, 54(2), 875–891. CrossRef  Google Scholar 
  142. Song, S.K., Sun, S.W., Ju, W.K., Lin, S.J., Cross, A.H., & Neufeld, A.H. (2003). Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage, 20(3), 1714–1722. CrossRef  Google Scholar  PubMed 
  143. Sporns, O. (2012). Discovering the human connectome. Cambridge, MA: MIT Press. Google Scholar 
  144. Sporns, O., Tononi, G., & Kötter, R. (2005). The human connectome: A structural description of the human brain. PLoS Computational Biology, 1(4), e42. CrossRef  Google Scholar  PubMed 
  145. Srinivasan, R., Winter, W.R., Ding, J., & Nunez, P.L. (2007). EEG and MEG coherence: Measures of functional connectivity at distinct spatial scales of neocortical dynamics. Journal of Neuroscience Methods, 166(1), 41–52. CrossRef  Google Scholar  PubMed 
  146. Stam, C.J. (2004). Functional connectivity patterns of human magnetoencephalographic recordings: A ‘small-world’ network? Neuroscience Letters, 355(1–2), 25–28. CrossRef  Google Scholar  PubMed 
  147. Stam, C.J. (2014). Modern network science of neurological disorders. [Review]. Nature Reviews Neuroscience, 15(10), 683. CrossRef  Google Scholar 
  148. Stam, C.J., Jones, B.F., Nolte, G., Breakspear, M., & Scheltens, P. (2007). Small-world networks and functional connectivity in Alzheimer’s disease. Cerebral Cortex, 17(1), 92–99. CrossRef  Google Scholar  PubMed 
  149. Stanisz, G.J., Szafer, A., Wright, G.A., & Henkelman, R.M. (1997). An analytical model of restricted diffusion in bovine optic nerve. Magnetic Resonance in Medicine, 37(1), 103–111. CrossRef  Google Scholar 
  150. Stone, J.V. (2004). Independent component analysis: A tutorial introduction. Cambridge, MA: MIT press. Google Scholar 
  151. Strother, S.C., Anderson, J.R., Schaper, K.A., Sidtis, J.J., Liow, J.S., Woods, R.P., & Rottenberg, D.A. (1995). Principal component analysis and the scaled subprofile model compared to intersubject averaging and statistical parametric mapping: I. “Functional connectivity” of the human motor system studied with [15O]water PET. Journal of Cerebral Blood Flow & Metabolism, 15(5), 738–753. CrossRef  Google Scholar 
  152. Thirion, B., Varoquaux, G., Dohmatob, E., & Poline, J.-B. (2014). Which fMRI clustering gives good brain parcellations? [Original Research]. Frontiers in Neuroscience, 8, 167. CrossRef  Google Scholar 
  153. Tournier, J.D., Mori, S., & Leemans, A. (2011). Diffusion tensor imaging and beyond. Magnetic Resonance in Medicine, 65(6), 1532–1556. CrossRef  Google Scholar  PubMed 
  154. van den Heuvel, M.P., & Sporns, O. (2011). Rich-club organization of the human connectome. The Journal of Neuroscience, 31(44), 15775–15786. CrossRef  Google Scholar  PubMed 
  155. van den Heuvel, M.P., & Sporns, O. (2013). Network hubs in the human brain. Trends in Cognitive Sciences, 17(12), 683–696. CrossRef  Google Scholar  PubMed 
  156. Van Dijk, K.R., Hedden, T., Venkataraman, A., Evans, K.C., Lazar, S.W., & Buckner, R.L. (2010). Intrinsic functional connectivity as a tool for human connectomics: Theory, properties, and optimization. Journal of Neurophysiology, 103, 297–321. CrossRef  Google Scholar 
  157. Varela, F., Lachaux, J.P., Rodriguez, E., & Martinerie, J. (2001). The brainweb: Phase synchronization and large-scale integration. Nature Reviews. Neuroscience, 2(4), 229–239. CrossRef  Google Scholar  PubMed 
  158. Vern, B.A., Schuette, W.H., Leheta, B., Juel, V.C., & Radulovacki, M. (1988). Low-frequency oscillations of cortical oxidative metabolism in waking and sleep. Journal of Cerebral Blood Flow & Metabolism, 8(2), 215–226. CrossRef  Google Scholar  PubMed 
  159. Wang, Y., Wang, Q., Haldar, J.P., Yeh, F.C., Xie, M., Sun, P., & Song, S.K. (2011). Quantification of increased cellularity during inflammatory demyelination. Brain, 134(Pt 12), 3590–3601. CrossRef  Google Scholar  PubMed 
  160. Watts, D.J., & Strogatz, S.H. (1998). Collective dynamics of /“small-world/” networks. Nature, 393(6684), 440–442. CrossRef  Google Scholar  PubMed 
  161. Wheeler-Kingshott, C.A., & Cercignani, M. (2009). About “axial” and “radial” diffusivities. Magnetic Resonance in Medicine, 61(5), 1255–1260. CrossRef  Google Scholar  PubMed 
  162. Yaesoubi, M., Miller, R.L., & Calhoun, V.D. (2015). Mutually temporally independent connectivity patterns: A new framework to study the dynamics of brain connectivity at rest with application to explain group difference based on gender. Neuroimage, 107, 85–94. CrossRef  Google Scholar  PubMed 
  163. Yang, H., Long, X.Y., Yang, Y., Yan, H., Zhu, C.Z., Zhou, X.P., & Gong, Q, Y. (2007). Amplitude of low frequency fluctuation within visual areas revealed by resting-state functional MRI. Neuroimage, 36(1), 144–152. CrossRef  Google Scholar  PubMed 
  164. Yendiki, A., Koldewyn, K., Kakunoori, S., Kanwisher, N., & Fischl, B. (2013). Spurious group differences due to head motion in a diffusion MRI study. Neuroimage, 88C, 79–90. Google Scholar 
  165. Yendiki, A., Panneck, P., Srinivasan, P., Stevens, A., Zollei, L., Augustinack, J., & Fischl, B. (2011). Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy. Frontiers in Neuroinformatics, 5, 23. CrossRef  Google Scholar 
  166. Zang, Y., Jiang, T., Lu, Y., He, Y., & Tian, L. (2004). Regional homogeneity approach to fMRI data analysis. Neuroimage, 22(1), 394–400. CrossRef  Google Scholar  PubMed 
Traumatic Brain Injury as a Disorder of Brain Connectivity
Author(s)
  • Jasmeet P. Hayes | National Center for PTSD, VA Boston Healthcare System, Boston, Massachusetts, Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, Neuroimaging Research for Veterans Center, VA Boston Healthcare System, Boston, Massachusetts
  • Erin D. Bigler | Department of Psychology, Brigham Young University, Provo, Utah, Neuroscience Center, Brigham Young University, Provo, Utah, Department of Psychiatry, University of Utah, Salt Lake City, Utah
  • Mieke Verfaellie | Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, Memory Disorders Research Center, VA Boston Healthcare System, Boston, Massachusetts

Correspondence
E-mail address | jphayes@bu.edu

Disclosures
here are no financial disclosures or conflicts of interest to report for any of the authors.

Abstract
Objectives:

Recent advances in neuroimaging methodologies sensitive to axonal injury have made it possible to assess in vivo the extent of traumatic brain injury (TBI) -related disruption in neural structures and their connections. The objective of this paper is to review studies examining connectivity in TBI with an emphasis on structural and functional MRI methods that have proven to be valuable in uncovering neural abnormalities associated with this condition.

Methods:

We review studies that have examined white matter integrity in TBI of varying etiology and levels of severity, and consider how findings at different times post-injury may inform underlying mechanisms of post-injury progression and recovery. Moreover, in light of recent advances in neuroimaging methods to study the functional connectivity among brain regions that form integrated networks, we review TBI studies that use resting-state functional connectivity MRI methodology to examine neural networks disrupted by putative axonal injury.

Results:

The findings suggest that TBI is associated with altered structural and functional connectivity, characterized by decreased integrity of white matter pathways and imbalance and inefficiency of functional networks. These structural and functional alterations are often associated with neurocognitive dysfunction and poor functional outcomes.

Conclusions:

TBI has a negative impact on distributed brain networks that lead to behavioral disturbance. (JINS, 2016,22, 120–137)

Bibliography
  1. Adams, J.H., Doyle, D., Ford, I., Gennarelli, T.A., Graham, D.I., & McLellan, D.R. (1989). Diffuse axonal injury in head injury: Definition, diagnosis and grading. Histopathology, 15, 49–59. CrossRef  Google Scholar  PubMed 
  2. Aoki, Y., Inokuchi, R., Gunshin, M., Yahagi, N., & Suwa, H. (2012). Diffusion tensor imaging studies of mild traumatic brain injury: A meta-analysis. Journal of Neurology, Neurosurgery, & Psychiatry, 83, 870–876. CrossRef  Google Scholar  PubMed 
  3. Arenivas, A., Diaz-Arrastia, R., Spence, J., Cullum, C., Krishnan, K., Bosworth, C., & Marquez de la Plata, C. (2014). Three approaches to investigating functional compromise to the default mode network after traumatic axonal injury. Brain Imaging and Behavior, 8, 407–419. CrossRef  Google Scholar  PubMed 
  4. Arfanakis, K., Haughton, V.M., Carew, J.D., Rogers, B.P., Dempsey, R.J., & Meyerand, M.E. (2002). Diffusion tensor MR imaging in diffuse axonal injury. AJNR: American Journal of Neuroradiology, 23, 794–802. Google Scholar 
  5. Arnemann, K.L., Chen, A.J.W., Novakovic-Agopian, T., Gratton, C., Nomura, E.M., & D’Esposito, M. (2015). Functional brain network modularity predicts response to cognitive training after brain injury. Neurology, 84, 1568–1574. CrossRef  Google Scholar  PubMed 
  6. Ashwal, S., Tong, K.A., Ghosh, N., Bartnik-Olson, B., & Holshouser, B.A. (2014). Application of advanced neuroimaging modalities in pediatric traumatic brain injury. Journal of Child Neurology, 29, 1704–1717. CrossRef  Google Scholar  PubMed 
  7. Bazarian, J.J., Donnelly, K., Peterson, D.R., Warner, G.C., Zhu, T., & Zhong, J. (2013). The relation between posttraumatic stress disorder and mild traumatic brain injury acquired during Operations Enduring Freedom and Iraqi Freedom. Journal of Head Trauma Rehabilitation, 28, 1–12. CrossRef  Google Scholar 
  8. Bazarian, J.J., Zhong, J., Blyth, B., Zhu, T., Kavcic, V., & Peterson, D. (2007). Diffusion tensor imaging detects clinically important axonal damage after mild traumatic brain injury: A pilot study. Journal of Neurotrauma, 24, 1447–1459. CrossRef  Google Scholar  PubMed 
  9. Bazarian, J.J., Zhu, T., Blyth, B., Borrino, A., & Zhong, J. (2012). Subject-specific changes in brain white matter on diffusion tensor imaging after sports-related concussion. Magnetic Resonance Imaging, 30, 171–180. CrossRef  Google Scholar  PubMed 
  10. Begonia, M., Prabhu, R., Liao, J., Whittington, W., Claude, A., Willeford, B., Wardlaw, J., &... Williams, L. (2014). Quantitative analysis of brain microstructure following mild blunt and blast trauma. Journal of Biomechanics, 47(15), 3704–3711. CrossRef  Google Scholar  PubMed 
  11. Bendlin, B.B., Ries, M.L., Lazar, M., Alexander, A.L., Dempsey, R.J., Rowley, H.A., & Johnson, S.C. (2008). Longitudinal changes in patients with traumatic brain injury assessed with diffusion-tensor and volumetric imaging. Neuroimage, 42, 503–514. CrossRef  Google Scholar  PubMed 
  12. Bigler, E.D. (2001). The lesion (s) in traumatic brain injury: Implications for clinical neuropsychology. Archives of Clinical Neuropsychology, 16, 95–131. CrossRef  Google Scholar  PubMed 
  13. Bigler, E.D. (2013a). Neuroinflammation and the dynamic lesion in traumatic brain injury. Brain, 136, 9–11. CrossRef  Google Scholar 
  14. Bigler, E.D. (2013b). Traumatic brain injury, neuroimaging, and neurodegeneration. Frontiers in Human Neuroscience, 7, 395. CrossRef  Google Scholar  PubMed 
  15. Bigler, E.D., Abildskov, T.J., Wilde, E.A., McCauley, S.R., Li, X., Merkley, T.L., & Levin, H.S. (2010). Diffuse damage in pediatric traumatic brain injury: A comparison of automated versus operator-controlled quantification methods. Neuroimage, 50, 1017–1026. CrossRef  Google Scholar  PubMed 
  16. Bigler, E.D., & Maxwell, W.L. (2012). Neuropathology of mild traumatic brain injury: Relationship to neuroimaging findings. Brain Imaging and Behavior, 6, 108–136. CrossRef  Google Scholar  PubMed 
  17. Blumbergs, P.C., Scott, G., Vis, J.M., Wainwright, H., Simpson, D.A., & McLean, A.J. (1995). Topography of axonal injury as defined by amyloid precursor protein and the sector scoring method in mild and severe closed head injury. Journal of Neurotrauma, 12(4), 565–572. CrossRef  Google Scholar  PubMed 
  18. Bonelle, V., Ham, T., Leech, R., Kinnunen, K., Mehta, M., Greenwood, R., & Sharp, D. (2012). Salience network integrity predicts default mode network function after traumatic brain injury. Proceedings of the National Academy of Sciences of the United States of America, 109, 4690–4695. CrossRef  Google Scholar 
  19. Bonelle, V., Leech, R., MKinnunen, K., Ham, T., Beckmann, C., De Boissezon, X., & Sharp, D. (2011). Default mode network connectivity predicts sustained attention deficits after traumatic brain injury. The Journal of Neuroscience, 31, 13442–13451. CrossRef  Google Scholar 
  20. Bouix, S., Pasternak, O., Rathi, Y., Pelavin, P.E., Zafonte, R., & Shenton, M.E. (2013). Increased gray matter diffusion anisotropy in patients with persistent post-concussive symptoms following mild traumatic brain injury. PLoS One, 8(6), e66205. CrossRef  Google Scholar  PubMed 
  21. Bramlett, H.M., & Dietrich, W.D. (in press). Long-term consequences of traumatic brain injury: Current status of potential mechanisms of injury and neurological outcomes. Journal of Neurotrauma. doi: 10.1089/neu.2014.3352. Google Scholar  PubMed 
  22. Caeyenberghs, K., Leemans, A., Geurts, M., Taymans, T., Vander Linden, C., Smits-Engelsman, B.C.M., & Swinnen, S.P. (2010). Brain-behavior relationships in young traumatic brain injury patients: Fractional anisotropy measures are highly correlated with dynamic visuomotor tracking performance. Neuropsychologia, 48(5), 1472–1482. CrossRef  Google Scholar  PubMed 
  23. Caeyenberghs, K., Leemans, A., Heitger, M.H., Leunissen, I., Dhollander, T., Sunaert, S., & Swinnen, S.P. (2012). Graph analysis of functional brain networks for cognitive control of action in traumatic brain injury. Brain, 135(4), 1293–1307. CrossRef  Google Scholar  PubMed 
  24. Catani, M. (2005). The rises and falls of disconnection syndromes. Brain, 128(10), 2224–2239. CrossRef  Google Scholar  PubMed 
  25. Catani, M., Dell’Acqua, F., & Thiebaut de Schotten, M. (2013). A revised limbic system model for memory, emotion and behaviour. Neuroscience & Biobehavioral Reviews, 37, 1724–1737. CrossRef  Google Scholar  PubMed 
  26. Catani, M., & Thiebaut de Schotten, M. (2008). A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex, 44, 1105–1132. CrossRef  Google Scholar  PubMed 
  27. Choudhri, A.F., Chin, E.M., Blitz, A.M., & Gandhi, D. (2014). Diffusion tensor imaging of cerebral white matter. Radiologic Clinics of North America, 52, 413–425. CrossRef  Google Scholar  PubMed 
  28. Cole, D.M., Smith, S.M., & Beckmann, C.F. (2010). Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Frontiers in Systems Neuroscience, 4, 8. Google Scholar  PubMed 
  29. Corbetta, M. (2012). Functional connectivity and neurological recovery. Developmental Psychobiology, 54, 239–253. CrossRef  Google Scholar 
  30. Costanzo, M.E., Chou, Y.-Y., Leaman, S., Pham, D.L., Keyser, D., Nathan, D.E., & Roy, M.J. (2014). Connecting combat-related mild traumatic brain injury with posttraumatic stress disorder symptoms through brain imaging. Neuroscience Letters, 577, 11–15. CrossRef  Google Scholar  PubMed 
  31. Davenport, N.D., Lim, K.O., Armstrong, M.T., & Sponheim, S.R. (2012). Diffuse and spatially variable white matter disruptions are associated with blast-related mild traumatic brain injury. Neuroimage, 59, 2017–2024. CrossRef  Google Scholar  PubMed 
  32. Davenport, N.D., Lim, K.O., & Sponheim, S.R. (2015). White matter abnormalities associated with military PTSD in the context of blast TBI. Human Brain Mapping, 36(3), 1053–1064. CrossRef  Google Scholar  PubMed 
  33. Fagerholm, E.D., Hellyer, P.J., Scott, G., Leech, R., & Sharp, D.J. (2015). Disconnection of network hubs and cognitive impairment after traumatic brain injury. Brain, 138(6), 1696–1709. CrossRef  Google Scholar  PubMed 
  34. Fakhran, S., Yaeger, K., & Alhilali, L. (2013). Symptomatic white matter changes in mild traumatic brain injury resemble pathologic features of early Alzheimer dementia. Radiology, 269, 249–257. CrossRef  Google Scholar  PubMed 
  35. Farbota, K.D., Bendlin, B.B., Alexander, A.L., Rowley, H.A., Dempsey, R.J., & Johnson, S.C. (2012). Longitudinal diffusion tensor imaging and neuropsychological correlates in traumatic brain injury patients. Frontiers in Human Neuroscience, 6, 160. CrossRef  Google Scholar  PubMed 
  36. Gale, S.D., Johnson, S.C., Bigler, E.D., & Blatter, D.D. (1995). Nonspecific white matter degeneration following traumatic brain injury. Journal of the International Neuropsychological Society, 1(1), 17–28. CrossRef  Google Scholar  PubMed 
  37. Gardner, A., Kay-Lambkin, F., Stanwell, P., Donnelly, J., Williams, W.H., Hiles, A., & Jones, D.K. (2012). A systematic review of diffusion tensor imaging findings in sports-related concussion. Journal of Neurotrauma, 29, 2521–2538. CrossRef  Google Scholar  PubMed 
  38. Geary, E.K., Kraus, M.F., Pliskin, N.H., & Little, D.M. (2010). Verbal learning differences in chronic mild traumatic brain injury. Journal of the International Neuropsychological Society, 16, 506. CrossRef  Google Scholar 
  39. Gentry, L.R., Thompson, B., & Godersky, J.C. (1988). Trauma to the corpus callosum: MR features. AJNR: American Journal of Neuroradiology, 9(6), 1129–1138. Google Scholar  PubMed 
  40. Geschwind, N. (1965). Disconnexion syndromes in animals and man. Brain, 88(3), 585–585. CrossRef  Google Scholar  PubMed 
  41. Goetz, P., Blamire, A., Rajagopalan, B., Cadoux-Hudson, T., Young, D., & Styles, P. (2004). Increase in apparent diffusion coefficient in normal appearing white matter following human traumatic brain injury correlates with injury severity. Journal of Neurotrauma, 21, 645–654. CrossRef  Google Scholar  PubMed 
  42. Greenberg, G., Mikulis, D.J., Ng, K., DeSouza, D., & Green, R.E. (2008). Use of diffusion tensor imaging to examine subacute white matter injury progression in moderate to severe traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 89, S45–S50. CrossRef  Google Scholar  PubMed 
  43. Grossman, E.J., Jensen, J.H., Babb, J.S., Chen, Q., Tabesh, A., Fieremans, E., & Grossman, R.I. (2013). Cognitive impairment in mild traumatic brain injury: A longitudinal diffusional kurtosis and perfusion imaging study. AJNR: American Journal of Neuroradiology, 34, 951–957. CrossRef  Google Scholar  PubMed 
  44. Håberg, A., Olsen, A., Moen, K., Schirmer-Mikalsen, K., Visser, E., Finnanger, T., & Eikenes, L. (2015). White matter microstructure in chronic moderate-to-severe traumatic brain injury: Impact of acute-phase injury-related variables and associations with outcome measures. Journal of Neuroscience Research, 93, 1109–1126. CrossRef  Google Scholar 
  45. Ham, T.E., Bonnelle, V., Hellyer, P., Jilka, S., Robertson, I.H., Leech, R., & Sharp, D.J. (2014). The neural basis of impaired self-awareness after traumatic brain injury. Brain, 137(2), 586–597. CrossRef  Google Scholar  PubMed 
  46. Han, K., Mac Donald, C., Johnson, A., Barnes, Y., Wierzechowski, L., Zonies, D., & Brody, D. (2014). Disrupted modular organization of resting-state cortical functional connectivity in U.S. military personnel following concussive ‘mild’ blast-related traumatic brain injury. Neuroimage, 84, 76–96. CrossRef  Google Scholar  PubMed 
  47. Hartikainen, K.M., Wäljas, M., Isoviita, T., Dastidar, P., Liimatainen, S., Solbakk, A.-K., & Öhman, J. (2010). Persistent symptoms in mild to moderate traumatic brain injury associated with executive dysfunction. Journal of Clinical and Experimental Neuropsychology, 32, 767–774. CrossRef  Google Scholar  PubMed 
  48. Hayes, J.P., Miller, D.R., Lafleche, G., Salat, D.H., & Verfaellie, M. (2015). The nature of white matter abnormalities in blast-related mild traumatic brain injury. Neuroimage: Clinical, 8, 148–156. CrossRef  Google Scholar  PubMed 
  49. Hayes, J.P., Morey, R.A., & Tupler, L.A. (2012). A case of frontal neuropsychological and neuroimaging signs following multiple primary-blast exposure. Neurocase, 18, 258–269. CrossRef  Google Scholar  PubMed 
  50. Hellyer, P.J., Leech, R., Ham, T.E., Bonnelle, V., & Sharp, D.J. (2013). Individual prediction of white matter injury following traumatic brain injury: Multivariate analysis of white matter after TBI. Annals of Neurology, 73, 489–499. CrossRef  Google Scholar 
  51. Hellyer, P.J., Scott, G., Shanahan, M., Sharp, D.J., & Leech, R. (2015). Cognitive flexibility through metastable neural dynamics is disrupted by damage to the structural connectome. The Journal of Neuroscience, 35(24), 9050–9063. CrossRef  Google Scholar  PubMed 
  52. Henry, L.C., Tremblay, J., Tremblay, S., Lee, A., Brun, C., Lepore, N., & Lassonde, M. (2011). Acute and chronic changes in diffusivity measures after sports concussion. Journal of Neurotrauma, 28, 2049–2059. CrossRef  Google Scholar  PubMed 
  53. Hillary, F., Rajtmajer, S., Roman, C., Medaglia, J., Slocomb-Dluzen, J., Calhoun, V., & Wylie, G. (2014). The rich get richer: Brain injury elicits hyperconnectivity in core subnetworks. PLoS One, 9, 1–15. CrossRef  Google Scholar  PubMed 
  54. Hillary, F., Roman, C., Venkatesan, U., & Rajtmajer, S. (2015). Hyperconnectivity is a fundamental response to neurological disruption. Neuropsychology, 29, 59–75. CrossRef  Google Scholar  PubMed 
  55. Hillary, F., Slocomb, J., Hills, E., Fitzpatrick, N., Medaglia, J., Wang, J., & Wylie, G. (2011). Changes in resting connectivity during recovery from severe traumatic brain injury. International Journal of Psychophysiology, 82, 115–123. CrossRef  Google Scholar  PubMed 
  56. Hou, D.J., Tong, K.A., Ashwal, S., Oyoyo, U., Joo, E., Shutter, L. &Obenaus, A. (2007). Diffusion-weighted magnetic resonance imaging improves outcome prediction in adult traumatic brain injury. Journal of Neurotrauma, 24, 1558–1569. CrossRef  Google Scholar  PubMed 
  57. Huisman, T.A., Schwamm, L.H., Schaefer, P.W., Koroshetz, W.J., Shetty-Alva, N., Ozsunar, Y., & Sorensen, A.G. (2004). Diffusion tensor imaging as potential biomarker of white matter injury in diffuse axonal injury. AJNR: American Journal of Neuroradiology, 25(3), 370–376. Google Scholar  PubMed 
  58. Hulkower, M.B., Poliak, D.B., Rosenbaum, S.B., Zimmerman, M.E., & Lipton, M.L. (2013). A decade of DTI in traumatic brain injury: 10 years and 100 articles later. AJNR: American Journal of Neuroradiology, 34, 2064–2074. CrossRef  Google Scholar  PubMed 
  59. Ilvesmaki, T., Luoto, T.M., Hakulinen, U., Brander, A., Ryymin, P., Eskola, H., & Ohman, J. (2014). Acute mild traumatic brain injury is not associated with white matter change on diffusion tensor imaging. Brain, 137, 1876–1882. CrossRef  Google Scholar 
  60. Inglese, M., Makani, S., Johnson, G., Cohen, B.A., Silver, J.A., Gonen, O., & Grossman, R.I. (2005). Diffuse axonal injury in mild traumatic brain injury: A diffusion tensor imaging study. Journal of Neurosurgery, 103, 298–303. CrossRef  Google Scholar  PubMed 
  61. Irimia, A., Chambers, M.C., Torgerson, C.M., Filippou, M., Hovda, D.A., Alger, J.R., & Kikinis, R. (2012). Patient-tailored connectomics visualization for the assessment of white matter atrophy in traumatic brain injury. Frontiers in Neurology, 3, 10. CrossRef  Google Scholar  PubMed 
  62. Irimia, A., Goh, S.-Y., Torgerson, C., Vespa, P., & Van Horn, J. (2014). Structural and connectomic neuroimaging for the personalized study of longitudinal alterations in cortical shape, thickness and connectivity after traumatic brain injury. Journal of Neurosurgical Sciences, 58(3), 129. Google Scholar  PubMed 
  63. Jilka, S., Scott, G., Ham, T., Pickering, A., Bonelle, V., Braga, R., & Sharp, D. (2014). Damage to the salience network and interactions with the default mode network. The Journal of Neuroscience, 34, 10798–10807. CrossRef  Google Scholar  PubMed 
  64. Johnson, B., Zhang, K., Gay, M., Horovitz, S., Hallett, M., Sebastianelli, W., & Slobounov, S. (2012). Alteration of brain default network in subacute phase of injury in concussed individuals: Resting-state fMRI study. Neuroimage, 59, 511–518. CrossRef  Google Scholar  PubMed 
  65. Johnson, V.E., Stewart, J.E., Begbie, F.D., Trojanowski, J.Q., Smith, D.H., & Stewart, W. (2013). Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain, 136, 28–42. CrossRef  Google Scholar  PubMed 
  66. Jones, D. (2008). Studying connections in the living human brain with diffusion MRI. Cortex, 44, 936–952. CrossRef  Google Scholar  PubMed 
  67. Jones, D.K., & Cercignani, M. (2010). Twenty‐five pitfalls in the analysis of diffusion MRI data. NMR in Biomedicine, 23(7), 803–820. CrossRef  Google Scholar  PubMed 
  68. Jorge, R.E., Acion, L., White, T., Tordesillas-Gutierrez, D., Pierson, R., Crespo-Facorro, B., & Magnotta, V.A. (2012). White matter abnormalities in veterans with mild traumatic brain injury. American Journal of Psychiatry, 169, 1284–1291. CrossRef  Google Scholar  PubMed 
  69. Kennedy, M.R.T., Wozniak, J.R., Muetzel, R.L., Mueller, B.A., Chiou, H.-H., Pantekoek, K., & Lim, K.O. (2009). White matter and neurocognitive changes in adults with chronic traumatic brain injury. Journal of the International Neuropsychological Society, 15, 130–136. CrossRef  Google Scholar  PubMed 
  70. Kim, N., Branch, C.A., Kim, M., & Lipton, M.L. (2013). Whole brain approaches for identification of microstructural abnormalities in individual patients: Comparison of techniques applied to mild traumatic brain injury. PLoS One, 8, e59382. CrossRef  Google Scholar  PubMed 
  71. Kinnunen, K.M., Greenwood, R., Powell, J.H., Leech, R., Hawkins, P.C., Bonnelle, V., & Sharp, D.J. (2011). White matter damage and cognitive impairment after traumatic brain injury. Brain, 134, 449–463. CrossRef  Google Scholar  PubMed 
  72. Koerte, I.K., Ertl-Wagner, B., Reiser, M., Zafonte, R., & Shenton, M.E. (2012). White matter integrity in the brains of professional soccer players without a symptomatic concussion. Journal of the American Medical Association, 308(18), 1859–1861. CrossRef  Google Scholar  PubMed 
  73. Koerte, I.K., Kaufmann, D., Hartl, E., Bouix, S., Pasternak, O., Kubicki, M., & Shenton, M.E. (2012). A prospective study of physician-observed concussion during a varsity university hockey season: White matter integrity in ice hockey players. Part 3 of 4. Neurosurgical Focus, 33, E3. CrossRef  Google Scholar  PubMed 
  74. Kraus, M.F., Susmaras, T., Caughlin, B.P., Walker, C.J., Sweeney, J.A., & Little, D.M. (2007). White matter integrity and cognition in chronic traumatic brain injury: A diffusion tensor imaging study. Brain, 130, 2508–2519. CrossRef  Google Scholar  PubMed 
  75. Kumar, R., Saksena, S., Husain, M., Srivastava, A., Rathore, R.K., Agarwal, S., & Gupta, R.K. (2010). Serial changes in diffusion tensor imaging metrics of corpus callosum in moderate traumatic brain injury patients and their correlation with neuropsychometric tests: A 2-year follow-up study. Journal of Head Trauma Rehabilitation, 25, 31–42. CrossRef  Google Scholar  PubMed 
  76. Lange, R.T., Iverson, G.L., Brubacher, J.R., Mädler, B., & Heran, M.K. (2012). Diffusion tensor imaging findings are not strongly associated with postconcussional disorder 2 months following mild traumatic brain injury. Journal of Head Trauma Rehabilitation, 27(3), 188–198. CrossRef  Google Scholar 
  77. Lange, R.T., Panenka, W.J., Shewchuk, J.R., Heran, M.K.S., Brubacher, J.R., Bioux, S., & Iverson, G.L. (2015). Diffusion tensor imaging findings and postconcussion symptom reporting six weeks following mild traumatic brain injury. Archives of Clinical Neuropsychology, 30(1), 7–25. CrossRef  Google Scholar  PubMed 
  78. Levin, H.S., Wilde, E., Troyanskaya, M., Petersen, N.J., Scheibel, R., Newsome, M., & Li, X. (2010). Diffusion tensor imaging of mild to moderate blast-related traumatic brain injury and its sequelae. Journal of Neurotrauma, 27, 683–694. CrossRef  Google Scholar  PubMed 
  79. Ling, J.M., Pena, A., Yeo, R.A., Merideth, F.L., Klimaj, S., Gasparovic, C., & Mayer, A.R. (2012). Biomarkers of increased diffusion anisotropy in semi-acute mild traumatic brain injury: A longitudinal perspective. Brain, 135, 1281–1292. CrossRef  Google Scholar  PubMed 
  80. Lipton, M.L., Gellella, E., Lo, C., Gold, T., Ardekani, B.A., Shifteh, K., & Branch, C.A. (2008). Multifocal white matter ultrastructural abnormalities in mild traumatic brain injury with cognitive disability: A voxel-wise analysis of diffusion tensor imaging. Journal of Neurotrauma, 25, 1335–1342. CrossRef  Google Scholar  PubMed 
  81. Lipton, M.L., Gulko, E., Zimmerman, M.E., Friedman, B.W., Kim, M., Gellella, E., & Branch, C.A. (2009). Diffusion-tensor imaging implicates prefrontal axonal injury in executive function impairment following very mild traumatic brain injury. Radiology, 252, 816–824. CrossRef  Google Scholar  PubMed 
  82. Lipton, M.L., Kim, N., Park, Y.K., Hulkower, M.B., Gardin, T.M., Shifteh, K., & Branch, C.A. (2012). Robust detection of traumatic axonal injury in individual mild traumatic brain injury patients: Intersubject variation, change over time and bidirectional changes in anisotropy. Brain Imaging and Behavior, 6, 329–342. CrossRef  Google Scholar  PubMed 
  83. Little, D.M., Kraus, M.F., Joseph, J., Geary, E.K., Susmaras, T., Zhou, X.J., Pliskin, N., & Gorelick, P.B. (2010). Thalamic integrity underlies executive dysfunction in traumatic brain injury. Neurology, 74, 558–564. CrossRef  Google Scholar  PubMed 
  84. Ljungqvist, J., Nilsson, D., Ljungberg, M., Sörbo, A., Esbjörnsson, E., Eriksson-Ritzén, C., & Skoglund, T. (2011). Longitudinal study of the diffusion tensor imaging properties of the corpus callosum in acute and chronic diffuse axonal injury. Brain Injury, 25, 370–378. CrossRef  Google Scholar  PubMed 
  85. Lo, C., Shifteh, K., Gold, T., Bello, J.A., & Lipton, M.L. (2009). Diffusion tensor imaging abnormalities in patients with mild traumatic brain injury and neurocognitive impairment. Journal of Computer Assisted Tomography, 33(2), 293–297. CrossRef  Google Scholar 
  86. Mac Donald, C.L., Adam, O.R., Johnson, A.M., Nelson, E.C., Werner, N.J., Rivet, D.J., & Brody, D.L. (2015). Acute post-traumatic stress symptoms and age predict outcome in military blast concussion. Brain, 138(5), 1314–1326. CrossRef  Google Scholar 
  87. Mac Donald, C.L., Dikranian, K., Song, S.K., Bayly, P.V., Holtzman, D.M., & Brody, D.L. (2007). Detection of traumatic axonal injury with diffusion tensor imaging in a mouse model of traumatic brain injury. Experimental Neurology, 205(1), 116–131. CrossRef  Google Scholar 
  88. Mac Donald, C.L., Johnson, A.M., Cooper, D., Nelson, E.C., Werner, N.J., Shimony, J.S., & Brody, D.L. (2011). Detection of blast–related traumatic brain injury in U.S. military personnel. New England Journal of Medicine, 364, 2091–2100. CrossRef  Google Scholar  PubMed 
  89. Marmarou, A., Signoretti, S., Fatouros, P.P., Portella, G., Aygok, G.A., & Bullock, M.R. (2006). Predominance of cellular edema in traumatic brain swelling in patients with severe head injuries. Journal of Neurosurgery, 104, 720–730. CrossRef  Google Scholar  PubMed 
  90. Marquez de la Plata, C., Garces, J., Kojori, E., Grinnan, J., Krishnan, K., Pidikiti, R., & Diaz-Arrastia, R. (2011). Deficits in functional connectivity of hippocampal and frontal lobe circuits after traumatic axonal injury. Archives of Neurology, 68, 74–84. CrossRef  Google Scholar  PubMed 
  91. Matsukawa, H., Shinoda, M., Fujii, M., Takahashi, O., Yamamoto, D., Murakata, A., & Ishikawa, R. (2011). Genu of corpus callosum in diffuse axonal injury induces a worse 1-year outcome in patients with traumatic brain injury. Acta Neurochirurgica, 153(8), 1687–1694. CrossRef  Google Scholar  PubMed 
  92. Matthews, S.C., Strigo, I.A., Simmons, A.N., O’Connell, R.M., Reinhardt, L.E., & Moseley, S.A. (2011). A multimodal imaging study in US veterans of Operations Iraqi and Enduring Freedom with and without major depression after blast-related concussion. Neuroimage, 54, S69–S75. CrossRef  Google Scholar 
  93. Mayer, A.R., Ling, J., Mannell, M.V., Gasparovic, C., Phillips, J.P., Doezema, D., & Yeo, R.A. (2010). A prospective diffusion tensor imaging study in mild traumatic brain injury. Neurology, 74, 643–650. CrossRef  Google Scholar 
  94. Mayer, A.R., Mannell, M., Ling, J., Gasparovic, C., & Yeo, R. (2011). Functional connectivity in mild traumatic brain injury. Human Brain Mapping, 32, 1825–1835. CrossRef  Google Scholar  PubMed 
  95. McCrea, M., Iverson, G.L., McAllister, T.W., Hammeke, T.A., Powell, M.R., Barr, W.B., & Kelly, J.P. (2009). An integrated review of recovery after mild traumatic brain injury (MTBI): Implications for clinical management. The Clinical Neuropsychologist, 23(8), 1368–1390. CrossRef  Google Scholar  PubMed 
  96. McKee, A.C., Stein, T.D., Nowinski, C.J., Stern, R.A., Daneshvar, D.H., Alvarez, V.E., & Baugh, C.M. (2013). The spectrum of disease in chronic traumatic encephalopathy. Brain, 136(1), 43–64. CrossRef  Google Scholar  PubMed 
  97. Messé, A., Caplain, S., Paradot, G., Garrigue, D., Mineo, J.-F., Soto Ares, G., & Lehéricy, S. (2011). Diffusion tensor imaging and white matter lesions at the subacute stage in mild traumatic brain injury with persistent neurobehavioral impairment. Human Brain Mapping, 32, 999–1011. CrossRef  Google Scholar  PubMed 
  98. Messé, A., Caplain, S., Pélégrini-Issac, M., Blancho, S., Lévy, R., Aghakhani, N., & Lehéricy, S. (2013). Specific and evolving resting-state network alterations in post-concussion syndrome following mild traumatic brain injury. PLoS One, 8, 1–10. CrossRef  Google Scholar  PubMed 
  99. Messé, A., Caplain, S., Pélégrini-Issac, M., Blancho, S., Montreuil, M., Lévy, R., & Benali, H. (2012). Structural integrity and postconcussion syndrome in mild traumatic brain injury patients. Brain Imaging and Behavior, 6, 283–292. CrossRef  Google Scholar  PubMed 
  100. Meythaler, J.M., Peduzzi, J.D., Eleftheriou, E., & Novack, T.A. (2001). Current concepts: Diffuse axonal injury–associated traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 82, 1461–1471. CrossRef  Google Scholar  PubMed 
  101. Miles, L., Grossman, R.I., Johnson, G., Babb, J.S., Diller, L., & Inglese, M. (2008). Short-term DTI predictors of cognitive dysfunction in mild traumatic brain injury. Brain Injury, 22(2), 115–122. CrossRef  Google Scholar  PubMed 
  102. Miller, B.T., & D’Esposito, M. (2005). Searching for “the top” in top-down control. Neuron, 48(4), 535–538. CrossRef  Google Scholar 
  103. Moen, K.G., Håberg, A.K., Skandsen, T., Finnanger, T.G., & Vik, A. (2014). A longitudinal magnetic resonance imaging study of the apparent diffusion coefficient values in corpus callosum during the first year after traumatic brain injury. Journal of Neurotrauma, 31, 56–63. CrossRef  Google Scholar  PubMed 
  104. Morey, R.A., Haswell, C.C., Selgrade, E.S., Massoglia, D., Liu, C., Weiner, J., & McCarthy, G. (2013). Effects of chronic mild traumatic brain injury on white matter integrity in Iraq and Afghanistan war veterans: Effects of TBI on white matter integrity. Human Brain Mapping, 34, 2986–2999. CrossRef  Google Scholar  PubMed 
  105. Nakamura, T., Hillary, F., & Biswal, B. (2009). Resting network plasticity following brain injury. PLoS One, 4, 1–9. CrossRef  Google Scholar  PubMed 
  106. Nakayama, N. (2006). Evidence for white matter disruption in traumatic brain injury without macroscopic lesions. Journal of Neurology, Neurosurgery, & Psychiatry, 77, 850–855. CrossRef  Google Scholar  PubMed 
  107. Newcombe, V.F., Correia, M.M., Ledig, C., Abate, M.G., Outtrim, J.G., Chatfield, D., & Pickard, J.D. (2015). Dynamic changes in white matter abnormalities correlate with late improvement and deterioration following TBI: A diffusion tensor imaging study. Neurorehabilitation and Neural Repair. doi: 10.1177/1545968315584004. Google Scholar  PubMed 
  108. Newcombe, V.F.J., Williams, G.B., Nortje, J., Bradley, P.G., Harding, S.G., Smielewski, P., & Menon, D.K. (2007). Analysis of acute traumatic axonal injury using diffusion tensor imaging. British Journal of Neurosurgery, 21, 340–348. CrossRef  Google Scholar  PubMed 
  109. Niogi, S.N., Mukherjee, P., Ghajar, J., Johnson, C.E., Kolster, R., Lee, H., & McCandliss, B.D. (2008). Structural dissociation of attentional control and memory in adults with and without mild traumatic brain injury. Brain, 131, 3209–3221. CrossRef  Google Scholar  PubMed 
  110. Ommaya, A.K., & Gennarelli, T.A. (1974). Cerebral concussion and traumatic unconsciousness. Correlation of experimental and clinical observations of blunt head injuries. Brain, 97, 633–654. CrossRef  Google Scholar  PubMed 
  111. Pal, D., Gupta, R.K., Agarwal, S., Yadav, A., Ojha, B.K., Awasthi, A., & Narayana, P.A. (2012). Diffusion tensor tractography indices in patients with frontal lobe injury and its correlation with neuropsychological tests. Clinical Neurology and Neurosurgery, 114, 564–571. CrossRef  Google Scholar  PubMed 
  112. Palacios, E., Sala-Llonch, R., Junque, C., Roig, T., Tormos, J., Bargallo, N., & Vendrell, P. (2012). White matter integrity related to functional working memory networks in traumatic brain injury. Neurology, 78, 852–860. CrossRef  Google Scholar  PubMed 
  113. Palacios, E., Sala-Llonch, R., Junque, C., Roig, T., Tormos, J., Bargallo, N., & Vendrell, P. (2013). Resting-state functional magnetic resonance imaging activity and connectivity and cognitive outcome in traumatic brain injury. JAMA Neurology, 70, 845–851. CrossRef  Google Scholar  PubMed 
  114. Pandit, A., Expert, P., Lambiotte, R., Bonelle, V., Leech, R., Turkheimer, F., & Sharp, D. (2013). Traumatic brain injury impairs small-world topology. Neurology, 80, 1826–1833. CrossRef  Google Scholar  PubMed 
  115. Peerless, S.J., & Rewcastle, N.B. (1967). Shear injuries of the brain. Canadian Medical Association Journal, 96, 577. Google Scholar 
  116. Perlbarg, V., Puybasset, L., Tollard, E., Lehéricy, S., Benali, H., & Galanaud, D. (2009). Relation between brain lesion location and clinical outcome in patients with severe traumatic brain injury: A diffusion tensor imaging study using voxel-based approaches. Human Brain Mapping, 30, 3924–3933. CrossRef  Google Scholar  PubMed 
  117. Petrie, E.C., Cross, D.J., Yarnykh, V.L., Richards, T., Martin, N.M., Pagulayan, K., & Peskind, E.R. (2014). Neuroimaging, behavioral, and psychological sequelae of repetitive combined blast/impact mild traumatic brain injury in Iraq and Afghanistan War Veterans. Journal of Neurotrauma, 31, 425–436. CrossRef  Google Scholar  PubMed 
  118. Povlishock, J.T., Becker, D.P., Cheng, C.L.Y., & Vaughan, G.W. (1983). Axonal change in minor head injury. Journal of Neuropathology & Experimental Neurology, 42(3), 225–242. CrossRef  Google Scholar  PubMed 
  119. Povlishock, J.T., & Christman, C.W. (1995). The pathobiology of traumatically induced axonal injury in animals and humans: A review of current thoughts. Journal of Neurotrauma, 12, 555–564. CrossRef  Google Scholar  PubMed 
  120. Reinarz, S.J., Coffman, C.E., Smoker, W.R., & Godersky, J.C. (1988). MR imaging of the corpus callosum: Normal and pathologic findings and correlation with CT. AJNR: American Journal of Neuroradiology, 9, 649–656. Google Scholar 
  121. Ruff, R.L., Riechers, R.G., Wang, X.-F., Piero, T., & Ruff, S.S. (2012). A case-control study examining whether neurological deficits and PTSD in combat veterans are related to episodes of mild TBI. BMJ Open, 2, 1–12. CrossRef  Google Scholar  PubMed 
  122. Ruppin, E., & Reggia, J.. (1995). Patterns of functional damage in neural network models of associative memory. Neural Computation, 7, 1105–1127. CrossRef  Google Scholar  PubMed 
  123. Ryu, J., Horkayne-Szakaly, I., Xu, L., Pletnikova, O., Leri, F., Eberhart, C., & Koliatsos, V.E. (2014). The problem of axonal injury in the brains of veterans with histories of blast exposure. Acta Neuropathologica Communications, 2, 1–14. CrossRef  Google Scholar  PubMed 
  124. Salmond, C.H., Menon, D.K., Chatfield, D.A., Williams, G.B., Pena, A., Sahakian, B.J., & Pickard, J.D. (2006). Diffusion tensor imaging in chronic head injury survivors: Correlations with learning and memory indices. Neuroimage, 29, 117–124. CrossRef  Google Scholar  PubMed 
  125. Sharp, D., Beckmann, C., Greenwood, R., Kinnunen, K., Bonelle, V., De Boissezon, X., & Leech, R. (2011). Default mode network functional and structural connectivity after traumatic brain injury. Brain, 134, 2233–2247. CrossRef  Google Scholar  PubMed 
  126. Sharp, D., Scott, G., & Leech, R. (2014). Network dysfunction after traumatic brain injury. Nature Reviews Neurology, 10, 156–166. CrossRef  Google Scholar  PubMed 
  127. Shenton, M.E., Hamoda, H.M., Schneiderman, J.S., Bouix, S., Pasternak, O., Rathi, Y., & Zafonte, R. (2012). A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury. Brain Imaging and Behavior, 6, 137–192. CrossRef  Google Scholar  PubMed 
  128. Shumskaya, E., Andriessen, T., Norris, D., & Vos, P. (2012). Abnormal whole-brain functional networks in homogeneous acute mild traumatic brain injury. Neurology, 79, 175–182. CrossRef  Google Scholar  PubMed 
  129. Sidaros, A., Engberg, A.W., Sidaros, K., Liptrot, M.G., Herning, M., Petersen, P., & Rostrup, E. (2008). Diffusion tensor imaging during recovery from severe traumatic brain injury and relation to clinical outcome: A longitudinal study. Brain, 131, 559–572. CrossRef  Google Scholar  PubMed 
  130. Skoglund, T.S., Nilsson, D., Ljungberg, M., Jönsson, L., & Rydenhag, B. (2008). Long-term follow-up of a patient with traumatic brain injury using diffusion tensor imaging. Acta Radiologica, 49, 98–100. CrossRef  Google Scholar  PubMed 
  131. Smith, D.H., Meaney, D.F., & Shull, W.H. (2003). Diffuse axonal injury in head trauma. Journal of Head Trauma Rehabilitation, 18, 307–316. CrossRef  Google Scholar  PubMed 
  132. Smith, S.M. (2012). The future of FMRI connectivity. Neuroimage, 62, 1257–1266. CrossRef  Google Scholar  PubMed 
  133. Smits, M., Houston, G.C., Dippel, D.W.J., Wielopolski, P.A., Vernooij, M.W., Koudstaal, P.J., & van Der Lugt, A. (2011). Microstructural brain injury in post-concussion syndrome after minor head injury. Neuroradiology, 53(8), 553–563. CrossRef  Google Scholar  PubMed 
  134. Sorg, S.F., Delano-Wood, L., Luc, N., Schiehser, D.M., Hanson, K.L., Nation, D.A., & Meloy, M. (2013). White matter integrity in veterans with mild traumatic brain injury: Associations with executive function and loss of consciousness. The Journal of Head Trauma Rehabilitation, 29(1), 21–32. CrossRef  Google Scholar  PubMed 
  135. Sours, C., Zhuo, J., Janowich, J., Aarabi, B., Shanmuganathan, K., & Gullapalli, R. (2013). Default mode network interference in mild traumatic brain injury – A pilot resting state study. Brain Research, 1537, 201–215. CrossRef  Google Scholar  PubMed 
  136. Sporns, O. (2014). Contributions and challenges for network models in cognitive neuroscience. Nature Neuroscience, 17, 652–660. CrossRef  Google Scholar  PubMed 
  137. Stevens, M., Lovejoy, D., Kim, J., Oakes, H., Kureshi, I., & Witt, S. (2012). Multiple resting state network functional connectivity abnormalities in mild traumatic brain injury. Brain Imaging and Behavior, 6, 293–318. CrossRef  Google Scholar  PubMed 
  138. Strich, S.J. (1956). Diffuse degeneration of the cerebral white matter in severe dementia following head injury. Journal of Neurology, Neurosurgery, and Psychiatry, 19, 163. CrossRef  Google Scholar  PubMed 
  139. Suskauer, S.J., & Huisman, T.A. (2009). Neuroimaging in pediatric traumatic brain injury: Current and future predictors of functional outcome. Developmental Disabilities Research Reviews, 15(2), 117–123. CrossRef  Google Scholar  PubMed 
  140. Taber, K.H., & Hurley, R.A. (2013). Update on mild traumatic brain injury: Neuropathology and structural imaging. The Journal of Neuropsychiatry and Clinical Neurosciences, 25(1), 1–5. CrossRef  Google Scholar  PubMed 
  141. Taber, K.H., Hurley, R.A., Haswell, C.C., Rowland, J.A., Hurt, S.D., Lamar, C.D., & Morey, R.A. (2015). White matter compromise in veterans exposed to primary blast forces. Journal of Head Trauma Rehabilitation, 30(1), E15–E25. CrossRef  Google Scholar  PubMed 
  142. Tang, L., Ge, Y., Sodickson, D., Miles, L., Zhou, Y., Reaume, J., & Grossman, R. (2011). Thalamic resting-state functional networks: Disruption in patients with mild traumatic brain injury. Radiology, 260, 831–840. CrossRef  Google Scholar  PubMed 
  143. Tate, D.F., & Bigler, E.D. (2000). Fornix and hippocampal atrophy in traumatic brain injury. Learning & Memory, 7(6), 442–446. CrossRef  Google Scholar  PubMed 
  144. Tomaszczyk, J.C., Green, N.L., Frasca, D., Colella, B., Turner, G.R., Christensen, B.K., & Green, R.E.A. (2014). Negative neuroplasticity in chronic traumatic brain injury and implications for neurorehabilitation. Neuropsychology Review, 24, 409–427. Google Scholar  PubMed 
  145. Tournier, J.D., Mori, S., & Leemans, A. (2011). Diffusion tensor imaging and beyond. Magnetic Resonance in Medicine, 65(6), 1532–1556. CrossRef  Google Scholar  PubMed 
  146. van den Heuvel, M.P., & Sporns, O. (2011). Rich-club organization of the human connectome. The Journal of Neuroscience, 31(44), 15775–15786. CrossRef  Google Scholar  PubMed 
  147. Venkatesan, U., Dennis, N., & Hillary, F. (2015). Chronology and chronicity of altered resting-state functional connectivity after traumatic brain injury. Journal of Neurotrauma, 32, 252–264. CrossRef  Google Scholar  PubMed 
  148. Voss, H.U., Uluç, A.M., Dyke, J.P., Watts, R., Kobylarz, E.J., McCandliss, B.D., & Vallabhajosula, S. (2006). Possible axonal regrowth in late recovery from the minimally conscious state. Journal of Clinical Investigation, 116(7), 2005. CrossRef  Google Scholar  PubMed 
  149. Wäljas, M., Lange, R.T., Hakulinen, U., Huhtala, H., Dastidar, P., Hartikainen, K., & Iverson, G.L. (2014). Biopsychosocial outcome after uncomplicated mild traumatic brain injury. Journal of Neurotrauma, 31(1), 108–124. CrossRef  Google Scholar  PubMed 
  150. Wang, J.Y., Bakhadirov, K., Abdi, H., Devous, M.D., Marquez de la Plata, C.D., Moore, C., & Diaz-Arrastia, R. (2011). Longitudinal changes of structural connectivity in traumatic axonal injury. Neurology, 77, 818–826. CrossRef  Google Scholar  PubMed 
  151. Warden, D.L., French, L.M., Shupenko, L., Fargus, J., Riedy, G., Erickson, M.E., & Moore, D.F. (2009). Case report of a soldier with primary blast brain injury. Neuroimage, 47, T152–T153. CrossRef  Google Scholar 
  152. Watts, R., Thomas, A., Filippi, C.G., Nickerson, J.P., & Freeman, K. (2014). Potholes and molehills: Bias in the diagnostic performance of diffusion-tensor imaging in concussion. Radiology, 272(1), 217–223. CrossRef  Google Scholar  PubMed 
  153. Wilde, E.A., Hunter, J.V., & Bigler, E.D. (2012). Neuroimaging in neurorehabilitation. NeuroRehabilitation, 31, 223–226. Google Scholar  PubMed 
  154. Xu, J., Rasmussen, I.-A., Lagopoulos, J., & Håberg, A. (2007). Diffuse axonal injury in severe traumatic brain injury visualized using high-resolution diffusion tensor imaging. Journal of Neurotrauma, 24(5), 753–765. CrossRef  Google Scholar  PubMed 
  155. Yeh, P.H., Wang, B., Oakes, T.R., French, L.M., Pan, H., Graner, J., & Riedy, G. (2014). Postconcussional disorder and PTSD symptoms of military-related traumatic brain injury associated with compromised neurocircuitry: Neurocircuitry in military TBI and clinical symptoms. Human Brain Mapping, 35, 2652–2673. CrossRef  Google Scholar 
  156. Yeo, B., Krienen, F., Sepulcre, J., Sabuncu, M., Lashkari, D., Hollinshead, M., & Buckner, R. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106, 1125–1165. Google Scholar  PubMed 
  157. Yuh, E.L., Cooper, S.R., Mukherjee, P., Yue, J.K., Lingsma, H.F., Gordon, W.A., & Vassar, M.J. (2014). Diffusion tensor imaging for outcome prediction in mild traumatic brain injury: A TRACK-TBI study. Journal of Neurotrauma, 31(17), 1457–1477. CrossRef  Google Scholar  PubMed 
  158. Zhang, S., & Li, C.S. (2012). Functional connectivity mapping of the human precuneus by resting state fMRI. Neuroimage, 59, 3548–3562. CrossRef  Google Scholar  PubMed 
  159. Zhou, Y., Lui, Y., Zuo, X., Milham, M., Reaume, J., Grossman, R., & Ge, Y. (2014). Characterization of thalamo-cortical association using amplitude and connectivity of functional MRI in mild traumatic brain injury. Journal of Magnetic Resonance Imaging, 39, 1558–1568. CrossRef  Google Scholar  PubMed 
  160. Zhou, Y., Milham, M., Lui, Y., Miles, L., Reaume, J., Sodickson, D., & Ge, Y. (2012). Default-mode network disruption in mild traumatic brain injury. Radiology, 265, 882–892. CrossRef  Google Scholar  PubMed 
Measuring Cortical Connectivity in Alzheimer’s Disease as a Brain Neural Network Pathology: Toward Clinical Applications
Author(s)
  • Stefan Teipel | Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany, DZNE, German Center for Neurodegenerative Diseases, Rostock, Germany
  • Michel J. Grothe | DZNE, German Center for Neurodegenerative Diseases, Rostock, Germany
  • Juan Zhou | Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School, Singapore
  • Jorge Sepulcre | Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
  • Martin Dyrba | DZNE, German Center for Neurodegenerative Diseases, Rostock, Germany
  • Christian Sorg | Department of Psychiatry and Neuroradiology, TUM-NIC Neuroimaging Center, Technische Universität München, Munich, Germany
  • Claudio Babiloni | Department of Physiology and Pharmacology “V. Erspamer”, University of Rome “La Sapienza”, Rome, Italy; IRCCS San Raffaele Pisana of Rome, Italy

Correspondence

Disclosures
There are no conflicts of interest related to this manuscript.

Abstract
Objectives:

The objective was to review the literature on diffusion tensor imaging as well as resting-state functional magnetic resonance imaging and electroencephalography (EEG) to unveil neuroanatomical and neurophysiological substrates of Alzheimer’s disease (AD) as a brain neural network pathology affecting structural and functional cortical connectivity underlying human cognition.

Methods:

We reviewed papers registered in PubMed and other scientific repositories on the use of these techniques in amnesic mild cognitive impairment (MCI) and clinically mild AD dementia patients compared to cognitively intact elderly individuals (Controls).

Results:

Hundreds of peer-reviewed (cross-sectional and longitudinal) papers have shown in patients with MCI and mild AD compared to Controls (1) impairment of callosal (splenium), thalamic, and anterior–posterior white matter bundles; (2) reduced correlation of resting state blood oxygen level-dependent activity across several intrinsic brain circuits including default mode and attention-related networks; and (3) abnormal power and functional coupling of resting state cortical EEG rhythms. Clinical applications of these measures are still limited.

Conclusions:

Structural and functional (in vivo) cortical connectivity measures represent a reliable marker of cerebral reserve capacity and should be used to predict and monitor the evolution of AD and its relative impact on cognitive domains in pre-clinical, prodromal, and dementia stages of AD. (JINS, 2016,22, 138–163)

Bibliography
  1. Acosta-Cabronero, J., Williams, G.B., Pengas, G., & Nestor, P.J. (2010). Absolute diffusivities define the landscape of white matter degeneration in Alzheimer’s disease. Brain, 133(Pt 2), 529–539. CrossRef  Google Scholar 
  2. Adriaanse, S.M., Sanz-Arigita, E.J., Binnewijzend, M.A., Ossenkoppele, R., Tolboom, N., van Assema, D.M., & van Berckel, B.N. (2014). Amyloid and its association with default network integrity in Alzheimer’s disease. Human Brain Mapping, 35(3), 779–791. CrossRef  Google Scholar  PubMed 
  3. Agosta, F., Pievani, M., Geroldi, C., Copetti, M., Frisoni, G.B., & Filippi, M. (2012). Resting state fMRI in Alzheimer’s disease: Beyond the default mode network. Neurobiology of Aging, 33(8), 1564–1578. CrossRef  Google Scholar  PubMed 
  4. Agosta, F., Rocca, M.A., Pagani, E., Absinta, M., Magnani, G., Marcone, A., & Filippi, M. (2010). Sensorimotor network rewiring in mild cognitive impairment and Alzheimer’s disease. Human Brain Mapping, 31(4), 515–525. Google Scholar  PubMed 
  5. Ahmed, Z., Cooper, J., Murray, T.K., Garn, K., McNaughton, E., Clarke, H., & O’Neill, M.J. (2014). A novel in vivo model of tau propagation with rapid and progressive neurofibrillary tangle pathology: The pattern of spread is determined by connectivity, not proximity. Acta Neuropathologica, 127(5), 667–683. CrossRef  Google Scholar 
  6. Arenaza-Urquijo, E.M., Landeau, B., La Joie, R., Mevel, K., Mezenge, F., Perrotin, A., & Chetelat, G. (2013). Relationships between years of education and gray matter volume, metabolism and functional connectivity in healthy elders. Neuroimage, 83C, 450–457. CrossRef  Google Scholar 
  7. Babiloni, C., Carducci, F., Lizio, R., Vecchio, F., Baglieri, A., Bernardini, S., & Frisoni, G.B. (2013). Resting state cortical electroencephalographic rhythms are related to gray matter volume in subjects with mild cognitive impairment and Alzheimer’s disease. Human Brain Mapping, 34(6), 1427–1446. CrossRef  Google Scholar  PubMed 
  8. Babiloni, C., Del Percio, C., Boccardi, M., Lizio, R., Lopez, S., Carducci, F., & Frisoni, G.B. (2015). Occipital sources of resting-state alpha rhythms are related to local gray matter density in subjects with amnesic mild cognitive impairment and Alzheimer’s disease. Neurobiology of Aging, 36(2), 556–570. CrossRef  Google Scholar  PubMed 
  9. Babiloni, C., Ferri, R., Binetti, G., Vecchio, F., Frisoni, G.B., Lanuzza, B., & Rossini, P.M. (2009). Directionality of EEG synchronization in Alzheimer’s disease subjects. Neurobiology of Aging, 30(1), 93–102. CrossRef  Google Scholar  PubMed 
  10. Babiloni, C., Frisoni, G., Steriade, M., Bresciani, L., Binetti, G., Del Percio, C., & Rossini, P.M. (2006). Frontal white matter volume and delta EEG sources negatively correlate in awake subjects with mild cognitive impairment and Alzheimer’s disease. Clinical Neurophysiology, 117(5), 1113–1129. CrossRef  Google Scholar  PubMed 
  11. Babiloni, C., Frisoni, G.B., Pievani, M., Vecchio, F., Lizio, R., Buttiglione, M., & Rossini, P.M. (2009). Hippocampal volume and cortical sources of EEG alpha rhythms in mild cognitive impairment and Alzheimer disease. Neuroimage, 44(1), 123–135. CrossRef  Google Scholar  PubMed 
  12. Babiloni, C., Pievani, M., Vecchio, F., Geroldi, C., Eusebi, F., Fracassi, C., & Frisoni, G.B. (2009). White-matter lesions along the cholinergic tracts are related to cortical sources of EEG rhythms in amnesic mild cognitive impairment. Human Brain Mapping, 30(5), 1431–1443. CrossRef  Google Scholar  PubMed 
  13. Bai, F., Liao, W., Yue, C., Pu, M., Shi, Y., Yu, H., & Zhang, Z. (2014). Genetics pathway-based imaging approaches in Chinese Han population with Alzheimer’s disease risk. Brain Structure & Function. [Epub ahead of print]. Google Scholar  PubMed 
  14. Bai, F., Watson, D.R., Shi, Y., Wang, Y., Yue, C., Yuhuan, Teng, & Zhang, Z. (2011). Specifically progressive deficits of brain functional marker in amnestic type mild cognitive impairment. PLoS One, 6(9), e24271. CrossRef  Google Scholar  PubMed 
  15. Bai, F., Watson, D.R., Yu, H., Shi, Y., Yuan, Y., & Zhang, Z. (2009). Abnormal resting-state functional connectivity of posterior cingulate cortex in amnestic type mild cognitive impairment. Brain Research, 1302, 167–174. CrossRef  Google Scholar  PubMed 
  16. Balachandar, R., John, J.P., Saini, J., Kumar, K.J., Joshi, H., Sadanand, S., & Bharath, S. (2015). A study of structural and functional connectivity in early Alzheimer’s disease using rest fMRI and diffusion tensor imaging. International Journal of Geriatric Psychiatry, 30(5), 497–504. CrossRef  Google Scholar  PubMed 
  17. Balthazar, M.L., Pereira, F.R., Lopes, T.M., da Silva, E.L., Coan, A.C., Campos, B.M., & Cendes, F. (2013). Neuropsychiatric symptoms in Alzheimer’s disease are related to functional connectivity alterations in the salience network. Human Brain Mapping. Google Scholar  PubMed 
  18. Basser, P.J., Mattiello, J., & LeBihan, D. (1994). MR diffusion tensor spectroscopy and imaging. Biophysical Journal, 66(1), 259–267. CrossRef  Google Scholar 
  19. Beckmann, C.F., DeLuca, M., Devlin, J.T., & Smith, S.M. (2005). Investigations into resting-state connectivity using independent component analysis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360(1457), 1001–1013. CrossRef  Google Scholar  PubMed 
  20. Bendlin, B.B., Carlsson, C.M., Johnson, S.C., Zetterberg, H., Blennow, K., Willette, A.A., & Sager, M.A. (2012). CSF T-Tau/Abeta42 predicts white matter microstructure in healthy adults at risk for Alzheimer’s disease. PLoS One, 7(6), e37720. CrossRef  Google Scholar  PubMed 
  21. Bendlin, B.B., Ries, M.L., Canu, E., Sodhi, A., Lazar, M., Alexander, A.L., & Johnson, S.C. (2010). White matter is altered with parental family history of Alzheimer’s disease. Alzheimers & Dementia, 6(5), 394–403. CrossRef  Google Scholar  PubMed 
  22. Binnewijzend, M.A., Schoonheim, M.M., Sanz-Arigita, E., Wink, A.M., van der Flier, W.M., Tolboom, N., & Barkhof, F. (2012). Resting-state fMRI changes in Alzheimer’s disease and mild cognitive impairment. Neurobiology of Aging, 33(9), 2018–2028. CrossRef  Google Scholar  PubMed 
  23. Biswal, B., Yetkin, F.Z., Haughton, V.M., & Hyde, J.S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34(4), 537–541. CrossRef  Google Scholar  PubMed 
  24. Biswal, B.B., Mennes, M., Zuo, X.N., Gohel, S., Kelly, C., Smith, S.M., & Milham, M.P. (2010). Toward discovery science of human brain function. Proceedings of the National Academy of Sciences of the United States of America, 107(10), 4734–4739. CrossRef  Google Scholar  PubMed 
  25. Bosch, B., Arenaza-Urquijo, E.M., Rami, L., Sala-Llonch, R., Junque, C., Sole-Padulles, C., & Bartres-Faz, D. (2012). Multiple DTI index analysis in normal aging, amnestic MCI and AD. Relationship with neuropsychological performance. Neurobiology of Aging, 33(1), 61–74. CrossRef  Google Scholar 
  26. Bozoki, A.C., Korolev, I.O., Davis, N.C., Hoisington, L.A., & Berger, K.L. (2012). Disruption of limbic white matter pathways in mild cognitive impairment and Alzheimer’s disease: A DTI/FDG-PET study. Human Brain Mapping, 33(8), 1792–1802. CrossRef  Google Scholar  PubMed 
  27. Bozzali, M., Dowling, C., Serra, L., Spano, B., Torso, M., Marra, C., & Cercignani, M. (2014). The impact of cognitive reserve on brain functional connectivity in Alzheimer’s Disease. Journal of Alzheimers Disease, 44, 243–250. Google Scholar  PubMed 
  28. Bozzali, M., Falini, A., Franceschi, M., Cercignani, M., Zuffi, M., Scotti, G., & Filippi, M. (2002). White matter damage in Alzheimer’s disease assessed in vivo using diffusion tensor magnetic resonance imaging. Journal of Neurology, Neurosurgery, and Psychiatry, 72(6), 742–746. CrossRef  Google Scholar 
  29. Bozzali, M., Franceschi, M., Falini, A., Pontesilli, S., Cercignani, M., Magnani, G., & Filippi, M. (2001). Quantification of tissue damage in AD using diffusion tensor and magnetization transfer MRI. Neurology, 57(6), 1135–1137. CrossRef  Google Scholar  PubMed 
  30. Braak, H., & Del Tredici, K. (2011). Alzheimer’s pathogenesis: Is there neuron-to-neuron propagation? Acta Neuropathologica, 121(5), 589–595. CrossRef  Google Scholar  PubMed 
  31. Braskie, M.N., Jahanshad, N., Stein, J.L., Barysheva, M., Johnson, K., McMahon, K.L., & Thompson, P.M. (2012). Relationship of a variant in the NTRK1 gene to white matter microstructure in young adults. The Journal of Neuroscience, 32(17), 5964–5972. CrossRef  Google Scholar  PubMed 
  32. Braskie, M.N., Jahanshad, N., Stein, J.L., Barysheva, M., McMahon, K.L., de Zubicaray, G.I., & Thompson, P.M. (2011). Common Alzheimer’s disease risk variant within the CLU gene affects white matter microstructure in young adults. The Journal of Neuroscience, 31(18), 6764–6770. CrossRef  Google Scholar  PubMed 
  33. Brier, M.R., Thomas, J.B., Snyder, A.Z., Benzinger, T.L., Zhang, D., Raichle, M.E., & Ances, B.M. (2012). Loss of intranetwork and internetwork resting state functional connections with Alzheimer’s disease progression. The Journal of Neuroscience, 32(26), 8890–8899. CrossRef  Google Scholar  PubMed 
  34. Brown, J.A., Terashima, K.H., Burggren, A.C., Ercoli, L.M., Miller, K.J., Small, G.W., & Bookheimer, S.Y. (2011). Brain network local interconnectivity loss in aging APOE-4 allele carriers. Proceedings of the National Academy of Sciences of the United States of America, 108(51), 20760–20765. CrossRef  Google Scholar  PubMed 
  35. Buckner, R.L., Andrews-Hanna, J.R., & Schacter, D.L. (2008). The brain’s default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38. CrossRef  Google Scholar  PubMed 
  36. Buckner, R.L., Sepulcre, J., Talukdar, T., Krienen, F.M., Liu, H., Hedden, T., & Johnson, K.A. (2009). Cortical hubs revealed by intrinsic functional connectivity: Mapping, assessment of stability, and relation to Alzheimer’s disease. The Journal of Neuroscience, 29(6), 1860–1873. CrossRef  Google Scholar 
  37. Buckner, R.L., Snyder, A.Z., Shannon, B.J., LaRossa, G., Sachs, R., Fotenos, A.F., & Mintun, M.A. (2005). Molecular, structural, and functional characterization of Alzheimer’s disease: Evidence for a relationship between default activity, amyloid, and memory. The Journal of Neuroscience, 25(34), 7709–7717. CrossRef  Google Scholar  PubMed 
  38. Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews. Neuroscience, 10(3), 186–198. CrossRef  Google Scholar  PubMed 
  39. Chao, L.L., Decarli, C., Kriger, S., Truran, D., Zhang, Y., Laxamana, J., & Weiner, M.W. (2013). Associations between white matter hyperintensities and beta amyloid on integrity of projection, association, and limbic fiber tracts measured with diffusion tensor MRI. PLoS One, 8(6), e65175. CrossRef  Google Scholar 
  40. Chen, T.F., Chen, Y.F., Cheng, T.W., Hua, M.S., Liu, H.M., & Chiu, M.J. (2009). Executive dysfunction and periventricular diffusion tensor changes in amnesic mild cognitive impairment and early Alzheimer’s disease. Human Brain Mapping, 30(11), 3826–3836. CrossRef  Google Scholar  PubMed 
  41. Chen, Y., Chen, K., Zhang, J., Li, X., Shu, N., Wang, J., & Reiman, E.M. (2014). Disrupted functional and structural networks in cognitively normal elderly subjects with the APOE varepsilon4 Allele. Neuropsychopharmacology, 40, 1181–1191. CrossRef  Google Scholar  PubMed 
  42. Chetelat, G., Desgranges, B., De La Sayette, V., Viader, F., Eustache, F., & Baron, J.C. (2002). Mapping gray matter loss with voxel-based morphometry in mild cognitive impairment. Neuroreport, 13(15), 1939–1943. CrossRef  Google Scholar  PubMed 
  43. Chetelat, G., Landeau, B., Salmon, E., Yakushev, I., Bahri, M.A., Mezenge, F., & Fellgiebel, A. (2013). Relationships between brain metabolism decrease in normal aging and changes in structural and functional connectivity. Neuroimage, 76, 167–177. CrossRef  Google Scholar  PubMed 
  44. Choo, I.H., Lee, D.Y., Youn, J.C., Jhoo, J.H., Kim, K.W., Lee, D.S., & Woo, J.I. (2007). Topographic patterns of brain functional impairment progression according to clinical severity staging in 116 Alzheimer disease patients: FDG-PET study. Alzheimer Disease and Associated Disorders, 21(2), 77–84. CrossRef  Google Scholar  PubMed 
  45. Cirrito, J.R., Kang, J.E., Lee, J., Stewart, F.R., Verges, D.K., Silverio, L.M., & Holtzman, D.M. (2008). Endocytosis is required for synaptic activity-dependent release of amyloid-beta in vivo. Neuron, 58(1), 42–51. CrossRef  Google Scholar  PubMed 
  46. Cirrito, J.R., Yamada, K.A., Finn, M.B., Sloviter, R.S., Bales, K.R., May, P.C., & Holtzman, D.M. (2005). Synaptic activity regulates interstitial fluid amyloid-beta levels in vivo. Neuron, 48(6), 913–922. CrossRef  Google Scholar 
  47. Corbetta, M., & Shulman, G.L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews. Neuroscience, 3(3), 201–215. CrossRef  Google Scholar 
  48. Cross, D.J., Anzai, Y., Petrie, E.C., Martin, N., Richards, T.L., Maravilla, K.R., & Minoshima, S. (2013). Loss of olfactory tract integrity affects cortical metabolism in the brain and olfactory regions in aging and mild cognitive impairment. Journal of Nuclear Medicine, 54(8), 1278–1284. CrossRef  Google Scholar 
  49. Crossley, N.A., Mechelli, A., Scott, J., Carletti, F., Fox, P.T., McGuire, P., & Bullmore, E.T. (2014). The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain, 137(Pt 8), 2382–2395. CrossRef  Google Scholar  PubMed 
  50. Crossley, N.A., Mechelli, A., Vertes, P.E., Winton-Brown, T.T., Patel, A.X., Ginestet, C.E., & Bullmore, E.T. (2013). Cognitive relevance of the community structure of the human brain functional coactivation network. Proceedings of the National Academy of Sciences of the United States of America, 110(28), 11583–11588. CrossRef  Google Scholar  PubMed 
  51. Daianu, M., Dennis, E.L., Jahanshad, N., Nir, T.M., Toga, A.W., Jack, C.R., & Thompson, P.M. (2013). Alzheimer’s disease disrupts rich club organization in brain connectivity networks. IEEE International Symposium on Biomedical Imaging, 2013, 266–269. Google Scholar 
  52. Daianu, M., Jahanshad, N., Nir, T.M., Jack, C.R., Weiner, M.W., Bernstein, M.A., & Thompson, P.M. (2015). Rich club analysis in the Alzheimer’s disease connectome reveals a relatively undisturbed structural core network. Human Brain Mapping, 36(8), 3087–3103. CrossRef  Google Scholar  PubMed 
  53. Damoiseaux, J.S., & Greicius, M.D. (2009). Greater than the sum of its parts: A review of studies combining structural connectivity and resting-state functional connectivity. Brain Structure & Function, 213(6), 525–533. CrossRef  Google Scholar 
  54. Damoiseaux, J.S., Rombouts, S.A., Barkhof, F., Scheltens, P., Stam, C.J., Smith, S.M., & Beckmann, C.F. (2006). Consistent resting-state networks across healthy subjects. Proceedings of the National Academy of Sciences of the United States of America, 103(37), 13848–13853. CrossRef  Google Scholar  PubMed 
  55. Damoiseaux, J.S., Seeley, W.W., Zhou, J., Shirer, W.R., Coppola, G., Karydas, A., & Greicius, M.D. (2012). Gender modulates the APOE {varepsilon}4 effect in healthy older adults: Convergent evidence from functional brain connectivity and spinal fluid Tau levels. The Journal of Neuroscience, 32(24), 8254–8262. CrossRef  Google Scholar 
  56. Daunizeau, J., David, O., & Stephan, K.E. (2011). Dynamic causal modelling: A critical review of the biophysical and statistical foundations. Neuroimage, 58(2), 312–322. CrossRef  Google Scholar 
  57. Dauwels, J., Vialatte, F., Musha, T., & Cichocki, A. (2010). A comparative study of synchrony measures for the early diagnosis of Alzheimer’s disease based on EEG. Neuroimage, 49(1), 668–693. CrossRef  Google Scholar  PubMed 
  58. Deco, G., & Corbetta, M. (2011). The dynamical balance of the brain at rest. The Neuroscientist, 17(1), 107–123. CrossRef  Google Scholar  PubMed 
  59. Dell’Acqua, F., & Catani, M. (2012). Structural human brain networks: Hot topics in diffusion tractography. Current Opinion in Neurology, 25(4), 375–383. Google Scholar 
  60. Dennis, E.L., & Thompson, P.M. (2014). Functional brain connectivity using fMRI in aging and Alzheimer’s disease. Neuropsychology Review, 24(1), 49–62. CrossRef  Google Scholar  PubMed 
  61. Doria, V., Beckmann, C.F., Arichi, T., Merchant, N., Groppo, M., Turkheimer, F.E., & Edwards, A.D. (2010). Emergence of resting state networks in the preterm human brain. Proceedings of the National Academy of Sciences of the United States of America, 107(46), 20015–20020. CrossRef  Google Scholar  PubMed 
  62. Douaud, G., Jbabdi, S., Behrens, T.E., Menke, R.A., Gass, A., Monsch, A.U., & Smith, S. (2011). DTI measures in crossing-fibre areas: Increased diffusion anisotropy reveals early white matter alteration in MCI and mild Alzheimer’s disease. Neuroimage, 55(3), 880–890. CrossRef  Google Scholar  PubMed 
  63. Douaud, G., Menke, R.A., Gass, A., Monsch, A.U., Rao, A., Whitcher, B., & Smith, S. (2013). Brain microstructure reveals early abnormalities more than two years prior to clinical progression from mild cognitive impairment to Alzheimer’s disease. The Journal of Neuroscience, 33(5), 2147–2155. CrossRef  Google Scholar  PubMed 
  64. Drzezga, A., Becker, J.A., Van Dijk, K.R., Sreenivasan, A., Talukdar, T., Sullivan, C., & Sperling, R.A. (2011). Neuronal dysfunction and disconnection of cortical hubs in non-demented subjects with elevated amyloid burden. Brain, 134(Pt 6), 1635–1646. CrossRef  Google Scholar 
  65. Dubois, B., Feldman, H.H., Jacova, C., Hampel, H., Molinuevo, J.L., Blennow, K., & Cummings, J.L. (2014). Advancing research diagnostic criteria for Alzheimer’s disease: The IWG-2 criteria. The Lancet. Neurology, 13(6), 614–629. CrossRef  Google Scholar  PubMed 
  66. Dyrba, M., Barkhof, F., Fellgiebel, A., Filippi, M., Hausner, L., Hauenstein, K., & Teipel, S.J. (2015). Predicting prodromal Alzheimer’s disease in subjects with mild cognitive impairment using machine learning classification of multimodal multicenter diffusion-tensor and magnetic resonance imaging data. J Neuroimaging, 25, 738–747. CrossRef  Google Scholar 
  67. Dyrba, M., Ewers, M., Wegrzyn, M., Kilimann, I., Plant, C., Oswald, A., & Teipel, S.J. (2013). Robust automated detection of microstructural white matter degeneration in Alzheimer’s disease using machine learning classification of multicenter DTI data. PLoS One, 8(5), e64925. CrossRef  Google Scholar 
  68. Dyrba, M., Grothe, M., Kirste, T., & Teipel, S.J. (2015). Multimodal analysis of functional and structural disconnection in Alzheimer’s disease using multiple kernel SVM. Human Brain Mapping, 36(6), 2118–2131. CrossRef  Google Scholar 
  69. Dziewczapolski, G., Glogowski, C.M., Masliah, E., & Heinemann, S.F. (2009). Deletion of the alpha 7 nicotinic acetylcholine receptor gene improves cognitive deficits and synaptic pathology in a mouse model of Alzheimer’s disease. The Journal of Neuroscience, 29(27), 8805–8815. CrossRef  Google Scholar 
  70. Fellgiebel, A., Dellani, P.R., Greverus, D., Scheurich, A., Stoeter, P., & Muller, M.J. (2006). Predicting conversion to dementia in mild cognitive impairment by volumetric and diffusivity measurements of the hippocampus. Psychiatry Research, 146(3), 283–287. CrossRef  Google Scholar  PubMed 
  71. Fellgiebel, A., Muller, M.J., Wille, P., Dellani, P.R., Scheurich, A., Schmidt, L.G., & Stoeter, P. (2005). Color-coded diffusion-tensor-imaging of posterior cingulate fiber tracts in mild cognitive impairment. Neurobiology of Aging, 26(8), 1193–1198. CrossRef  Google Scholar  PubMed 
  72. Fellgiebel, A., Schermuly, I., Gerhard, A., Keller, I., Albrecht, J., Weibrich, C., & Stoeter, P. (2008). Functional relevant loss of long association fibre tracts integrity in early Alzheimer’s disease. Neuropsychologia, 46(6), 1698–1706. CrossRef  Google Scholar  PubMed 
  73. Fischer, F.U., Scheurich, A., Wegrzyn, M., Schermuly, I., Bokde, A.L., Kloppel, S., & Fellgiebel, A. (2012). Automated tractography of the cingulate bundle in Alzheimer’s disease: A multicenter DTI study. Journal of Magnetic Resonance Imaging, 36, 84–91. CrossRef  Google Scholar  PubMed 
  74. Fischer, F.U., Wolf, D., Scheurich, A., & Fellgiebel, A. (2015). Altered whole-brain white matter networks in preclinical Alzheimer’s disease. Neuroimage: Clinical, 8, 660–666. CrossRef  Google Scholar  PubMed 
  75. Fletcher, E., Raman, M., Huebner, P., Liu, A., Mungas, D., Carmichael, O., & DeCarli, C. (2013). Loss of fornix white matter volume as a predictor of cognitive impairment in cognitively normal elderly individuals. JAMA Neurology, 70(11), 1389–1395. CrossRef  Google Scholar  PubMed 
  76. Forde, N.J., Ronan, L., Suckling, J., Scanlon, C., Neary, S., Holleran, L., & Cannon, D.M. (2014). Structural neuroimaging correlates of allelic variation of the BDNF val66met polymorphism. Neuroimage, 90, 280–289. CrossRef  Google Scholar  PubMed 
  77. Fox, M.D., & Greicius, M. (2010). Clinical applications of resting state functional connectivity. Frontiers in Systems Neuroscience, 4, 19. Google Scholar 
  78. Fox, M.D., & Raichle, M.E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews. Neuroscience, 8(9), 700–711. CrossRef  Google Scholar  PubMed 
  79. Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Van Essen, D.C., & Raichle, M.E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9673–9678. CrossRef  Google Scholar  PubMed 
  80. Friese, U., Meindl, T., Herpertz, S.C., Reiser, M.F., Hampel, H., & Teipel, S.J. (2010). Diagnostic utility of novel MRI-based biomarkers for Alzheimer’s disease: Diffusion tensor imaging and deformation-based morphometry. Journal of Alzheimer’s Disease, 20(2), 477–490. CrossRef  Google Scholar 
  81. Friston, K.J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. Neuroimage, 19(4), 1273–1302. CrossRef  Google Scholar 
  82. Gili, T., Cercignani, M., Serra, L., Perri, R., Giove, F., Maraviglia, B., & Bozzali, M. (2011). Regional brain atrophy and functional disconnection across Alzheimer’s disease evolution. Journal of Neurology, Neurosurgery, and Psychiatry, 82(1), 58–66. CrossRef  Google Scholar  PubMed 
  83. Glodzik, L., Kuceyeski, A., Rusinek, H., Tsui, W., Mosconi, L., Li, Y., & de Leon, M.J. (2014). Reduced glucose uptake and Abeta in brain regions with hyperintensities in connected white matter. Neuroimage, 100, 684–691. CrossRef  Google Scholar  PubMed 
  84. Goebel, R., Roebroeck, A., Kim, D.-S., & Formisano, E. (2003). Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping. Magnetic Resonance Imaging, 21(10), 1251–1261. CrossRef  Google Scholar  PubMed 
  85. Gold, B.T., Zhu, Z., Brown, C.A., Andersen, A.H., LaDu, M.J., Tai, L., & Smith, C.D. (2014). White matter integrity is associated with cerebrospinal fluid markers of Alzheimer’s disease in normal adults. Neurobiology of Aging, 35(10), 2263–2271. CrossRef  Google Scholar  PubMed 
  86. Goncalves, S.I., de Munck, J.C., Pouwels, P.J., Schoonhoven, R., Kuijer, J.P., Maurits, N.M., & Lopes da Silva, F.H. (2006). Correlating the alpha rhythm to BOLD using simultaneous EEG/fMRI: Inter-subject variability. Neuroimage, 30(1), 203–213. CrossRef  Google Scholar  PubMed 
  87. Gonzalez-Escamilla, G., Atienza, M., Garcia-Solis, D., & Cantero, J.L. (2014). Cerebral and blood correlates of reduced functional connectivity in mild cognitive impairment. Brain Structure & Function. [Epub ahead of print]. Google Scholar  PubMed 
  88. Grambaite, R., Selnes, P., Reinvang, I., Aarsland, D., Hessen, E., Gjerstad, L., & Fladby, T. (2011). Executive dysfunction in mild cognitive impairment is associated with changes in frontal and cingulate white matter tracts. Journal of Alzheimer’s Disease, 27(2), 453–462. Google Scholar  PubMed 
  89. Grana, M., Termenon, M., Savio, A., Gonzalez-Pinto, A., Echeveste, J., Perez, J.M., & Besga, A. (2011). Computer aided diagnosis system for Alzheimer disease using brain diffusion tensor imaging features selected by Pearson’s correlation. Neurosci Letters, 502(3), 225–229. CrossRef  Google Scholar  PubMed 
  90. Granger, C.W.J. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37(3), 424. CrossRef  Google Scholar 
  91. Greicius, M.D., Krasnow, B., Reiss, A.L., & Menon, V. (2003). Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100(1), 253–258. CrossRef  Google Scholar  PubMed 
  92. Greicius, M.D., & Menon, V. (2004). Default-mode activity during a passive sensory task: Uncoupled from deactivation but impacting activation. Journal of Cognitive Neuroscience, 16(9), 1484–1492. CrossRef  Google Scholar  PubMed 
  93. Greicius, M.D., Srivastava, G., Reiss, A.L., & Menon, V. (2004). Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: Evidence from functional MRI. Proceedings of the National Academy of Sciences of the United States of America, 101(13), 4637–4642. CrossRef  Google Scholar  PubMed 
  94. Greicius, M.D., Supekar, K., Menon, V., & Dougherty, R.F. (2009). Resting-state functional connectivity reflects structural connectivity in the default mode network. Cerebral Cortex, 19(1), 72–78. CrossRef  Google Scholar  PubMed 
  95. Hahn, K., Myers, N., Prigarin, S., Rodenacker, K., Kurz, A., Forstl, H., & Sorg, C. (2013). Selectively and progressively disrupted structural connectivity of functional brain networks in Alzheimer’s disease - revealed by a novel framework to analyze edge distributions of networks detecting disruptions with strong statistical evidence. Neuroimage, 81, 96–109. CrossRef  Google Scholar  PubMed 
  96. Hedden, T., Van Dijk, K.R., Becker, J.A., Mehta, A., Sperling, R.A., Johnson, K.A., & Buckner, R.L. (2009). Disruption of functional connectivity in clinically normal older adults harboring amyloid burden. The Journal of Neuroscience, 29(40), 12686–12694. CrossRef  Google Scholar  PubMed 
  97. Heise, V., Filippini, N., Trachtenberg, A.J., Suri, S., Ebmeier, K.P., & Mackay, C.E. (2014). Apolipoprotein E genotype, gender and age modulate connectivity of the hippocampus in healthy adults. Neuroimage, 98, 23–30. CrossRef  Google Scholar  PubMed 
  98. Horn, A., Ostwald, D., Reisert, M., & Blankenburg, F. (2014). The structural-functional connectome and the default mode network of the human brain. Neuroimage, 102(Pt 1), 142–151. CrossRef  Google Scholar  PubMed 
  99. Hsieh, H.J., Kao, P.F., Huang, H.L., & Chou, Y.H. (2010). Cardiac stab injury: A fixed perfusion defect on Tc-99m sestamibi SPECT. Clinical Nuclear Medicine, 35(2), 121–122. CrossRef  Google Scholar  PubMed 
  100. Huang, H., Fan, X., Weiner, M., Martin-Cook, K., Xiao, G., Davis, J., & Diaz-Arrastia, R. (2012). Distinctive disruption patterns of white matter tracts in Alzheimer’s disease with full diffusion tensor characterization. Neurobiology of Aging, 33(9), 2029–2045. CrossRef  Google Scholar  PubMed 
  101. Huang, J., & Auchus, A.P. (2007). Diffusion tensor imaging of normal appearing white matter and its correlation with cognitive functioning in mild cognitive impairment and Alzheimer’s disease. Annals of the New York Academy of Sciences, 1097, 259–264. CrossRef  Google Scholar  PubMed 
  102. Huang, J., Friedland, R.P., & Auchus, A.P. (2007). Diffusion tensor imaging of normal-appearing white matter in mild cognitive impairment and early Alzheimer disease: Preliminary evidence of axonal degeneration in the temporal lobe. AJNR American Journal of Neuroradiology, 28(10), 1943–1948. CrossRef  Google Scholar  PubMed 
  103. Iturria-Medina, Y., Sotero, R.C., Toussaint, P.J., & Evans, A.C. (2014). Epidemic spreading model to characterize misfolded proteins propagation in aging and associated neurodegenerative disorders. PLoS Computational Biology, 10(11), e1003956. CrossRef  Google Scholar  PubMed 
  104. Jack, C.R. Jr., Knopman, D.S., Jagust, W.J., Shaw, L.M., Aisen, P.S., Weiner, M.W., & Trojanowski, J.Q. (2010). Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. The Lancet. Neurology, 9(1), 119–128. CrossRef  Google Scholar  PubMed 
  105. Jacobs, H.I., Gronenschild, E.H., Evers, E.A., Ramakers, I.H., Hofman, P.A., Backes, W.H., & Van Boxtel, M.P. (2015). Visuospatial processing in early Alzheimer’s disease: A multimodal neuroimaging study. Cortex, 64, 394–406. CrossRef  Google Scholar  PubMed 
  106. Jeurissen, B., Leemans, A., Tournier, J.D., Jones, D.K., & Sijbers, J. (2013). Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging. Human Brain Mapping, 34(11), 2747–2766. CrossRef  Google Scholar 
  107. Jones, D.T., Vemuri, P., Murphy, M.C., Gunter, J.L., Senjem, M.L., Machulda, M.M., & Jack, C.R. Jr. (2012). Non-stationarity in the “resting brain’s” modular architecture. PLoS One, 7(6), e39731. CrossRef  Google Scholar 
  108. Kalus, P., Slotboom, J., Gallinat, J., Mahlberg, R., Cattapan-Ludewig, K., Wiest, R., & Kiefer, C. (2006). Examining the gateway to the limbic system with diffusion tensor imaging: The perforant pathway in dementia. Neuroimage, 30(3), 713–720. CrossRef  Google Scholar  PubMed 
  109. Kantarci, K., Schwarz, C.G., Reid, R.I., Przybelski, S.A., Lesnick, T.G., Zuk, S.M., & Jack, C.R. Jr. (2014). White matter integrity determined with diffusion tensor imaging in older adults without dementia: Influence of amyloid load and neurodegeneration. JAMA Neurology, 71(12), 1547–1554. CrossRef  Google Scholar 
  110. Kehoe, E.G., Farrell, D., Metzler-Baddeley, C., Lawlor, B.A., Kenny, R.A., Lyons, D., & Bokde, A.L. (2015). Fornix white matter is correlated with resting-state functional connectivity of the thalamus and hippocampus in healthy aging but not in mild cognitive impairment - A preliminary study. Frontiers in Aging Neuroscience, 7, 10. CrossRef  Google Scholar 
  111. Kim, H.J., Im, K., Kwon, H., Lee, J.M., Kim, C., Kim, Y.J., & Seo, S.W. (2015). Clinical effect of white matter network disruption related to amyloid and small vessel disease. Neurology, 85(1), 63–70. CrossRef  Google Scholar  PubMed 
  112. Kljajevic, V., Meyer, P., Holzmann, C., Dyrba, M., Kasper, E., Bokde, A.L., & Teipel, S. (2014). The epsilon4 genotype of apolipoprotein E and white matter integrity in Alzheimer’s disease. Alzheimers & Dementia, 10(3), 401–404. CrossRef  Google Scholar  PubMed 
  113. Klupp, E., Grimmer, T., Tahmasian, M., Sorg, C., Yakushev, I., Yousefi, B.H., & Forster, S. (2015). Prefrontal hypometabolism in Alzheimer disease is related to longitudinal amyloid accumulation in remote brain regions. Journal of Nuclear Medicine, 56(3), 399–404. CrossRef  Google Scholar 
  114. Koch, K., Myers, N.E., Gottler, J., Pasquini, L., Grimmer, T., Forster, S., & Sorg, C. (2014). Disrupted intrinsic networks link amyloid-beta pathology and impaired cognition in prodromal Alzheimer’s disease. Cerebral Cortex. [Epub ahead of print]. Google Scholar 
  115. Krajcovicova, L., Marecek, R., Mikl, M., & Rektorova, I. (2014). Disruption of resting functional connectivity in Alzheimer’s patients and at-risk subjects. Current Neurology and Neuroscience Reports, 14(10), 491. CrossRef  Google Scholar  PubMed 
  116. Kuczynski, B., Targan, E., Madison, C., Weiner, M., Zhang, Y., Reed, B., & Jagust, W. (2010). White matter integrity and cortical metabolic associations in aging and dementia. Alzheimers & Dementia, 6(1), 54–62. CrossRef  Google Scholar  PubMed 
  117. La Joie, R., Landeau, B., Perrotin, A., Bejanin, A., Egret, S., Pelerin, A., & Chetelat, G. (2014). Intrinsic connectivity identifies the hippocampus as a main crossroad between Alzheimer’s and semantic dementia-targeted networks. Neuron, 81(6), 1417–1428. CrossRef  Google Scholar  PubMed 
  118. Laufs, H., Krakow, K., Sterzer, P., Eger, E., Beyerle, A., Salek-Haddadi, A., & Kleinschmidt, A. (2003). Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proceedings of the National Academy of Sciences of the United States of America, 100(19), 11053–11058. CrossRef  Google Scholar  PubMed 
  119. Le Bihan, D., Mangin, J.F., Poupon, C., Clark, C.A., Pappata, S., Molko, N., & Chabriat, H. (2001). Diffusion tensor imaging: Concepts and applications. Journal of Magnetic Resonance Imaging, 13(4), 534–546. CrossRef  Google Scholar 
  120. Le Bihan, D., Turner, R., Douek, P., & Patronas, N. (1992). Diffusion MR imaging: Clinical applications. AJR American Journal of Roentgenology, 159(3), 591–599. CrossRef  Google Scholar 
  121. Lehmann, M., Madison, C.M., Ghosh, P.M., Seeley, W.W., Mormino, E., Greicius, M.D., & Rabinovici, G.D. (2013). Intrinsic connectivity networks in healthy subjects explain clinical variability in Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 110(28), 11606–11611. CrossRef  Google Scholar  PubMed 
  122. Liang, P., Wang, Z., Yang, Y., Jia, X., & Li, K. (2011). Functional disconnection and compensation in mild cognitive impairment: Evidence from DLPFC connectivity using resting-state fMRI. PLoS One, 6(7), e22153. CrossRef  Google Scholar 
  123. Liang, Y., Chen, Y., Li, H., Zhao, T., Sun, X., Shu, N., & Zhang, Z. (2015). Disrupted functional connectivity related to differential degeneration of the cingulum bundle in mild cognitive impairment patients. Current Alzheimer Research, 12(3), 255–265. CrossRef  Google Scholar  PubMed 
  124. Liang, Y., Li, H., Lv, C., Shu, N., Chen, K., Li, X., & Zhang, Z. (2015). Sex moderates the effects of the Sorl1 gene rs2070045 polymorphism on cognitive impairment and disruption of the cingulum integrity in healthy elderly. Neuropsychopharmacology, 40(6), 1519–1527. CrossRef  Google Scholar  PubMed 
  125. Liu, Z., Zhang, Y., Yan, H., Bai, L., Dai, R., Wei, W., & Tian, J. (2012). Altered topological patterns of brain networks in mild cognitive impairment and Alzheimer’s disease: A resting-state fMRI study. Psychiatry Research: Neuroimaging, 202(2), 118–125. CrossRef  Google Scholar  PubMed 
  126. Lo, C.Y., Wang, P.N., Chou, K.H., Wang, J., He, Y., & Lin, C.P. (2010). Diffusion tensor tractography reveals abnormal topological organization in structural cortical networks in Alzheimer’s disease. The Journal of Neuroscience, 30(50), 16876–16885. CrossRef  Google Scholar  PubMed 
  127. Lu, J., Liu, H., Zhang, M., Wang, D., Cao, Y., Ma, Q., & Li, K. (2011). Focal pontine lesions provide evidence that intrinsic functional connectivity reflects polysynaptic anatomical pathways. The Journal of Neuroscience, 31(42), 15065–15071. CrossRef  Google Scholar 
  128. Lyall, D.M., Harris, S.E., Bastin, M.E., Munoz Maniega, S., Murray, C., Lutz, M.W., & Deary, I.J. (2014). Alzheimer’s disease susceptibility genes APOE and TOMM40, and brain white matter integrity in the Lothian Birth Cohort 1936. Neurobiology of Aging, 35(6), 1513 e1525–e1533. CrossRef  Google Scholar 
  129. Machulda, M.M., Jones, D.T., Vemuri, P., McDade, E., Avula, R., Przybelski, S., & Jack, C.R. Jr. (2011). Effect of APOE epsilon4 status on intrinsic network connectivity in cognitively normal elderly subjects. Archives of Neurology, 68(9), 1131–1136. CrossRef  Google Scholar  PubMed 
  130. Mander, B.A., Marks, S.M., Vogel, J.W., Rao, V., Lu, B., Saletin, J.M., & Walker, M.P. (2015). beta-amyloid disrupts human NREM slow waves and related hippocampus-dependent memory consolidation. Nature Neuroscience, 18(7), 1051–1057. CrossRef  Google Scholar 
  131. Mantini, D., Perrucci, M.G., Del Gratta, C., Romani, G.L., & Corbetta, M. (2007). Electrophysiological signatures of resting state networks in the human brain. Proceedings of the National Academy of Sciences of the United States of America, 104(32), 13170–13175. CrossRef  Google Scholar  PubMed 
  132. Mason, M.F., Norton, M.I., Van Horn, J.D., Wegner, D.M., Grafton, S.T., & Macrae, C.N. (2007). Wandering minds: The default network and stimulus-independent thought. Science, 315(5810), 393–395. CrossRef  Google Scholar  PubMed 
  133. Matura, S., Prvulovic, D., Jurcoane, A., Hartmann, D., Miller, J., Scheibe, M., & Pantel, J. (2014). Differential effects of the ApoE4 genotype on brain structure and function. Neuroimage, 89, 81–91. CrossRef  Google Scholar  PubMed 
  134. Medina, D., DeToledo-Morrell, L., Urresta, F., Gabrieli, J.D., Moseley, M., Fleischman, D., & Stebbins, G.T. (2006). White matter changes in mild cognitive impairment and AD: A diffusion tensor imaging study. Neurobiology of Aging, 27(5), 663–672. CrossRef  Google Scholar 
  135. Mendez, M.F., & Shapira, J.S. (2009). Altered emotional morality in frontotemporal dementia. Cognitive Neuropsychiatry, 14(3), 165–179. CrossRef  Google Scholar  PubMed 
  136. Menon, V., & Uddin, L.Q. (2010). Saliency, switching, attention and control: A network model of insula function. Brain Structure & Function, 214(5-6), 655–667. CrossRef  Google Scholar  PubMed 
  137. Metzler-Baddeley, C., Hunt, S., Jones, D.K., Leemans, A., Aggleton, J.P., & O’Sullivan, M.J. (2012). Temporal association tracts and the breakdown of episodic memory in mild cognitive impairment. Neurology, 79(23), 2233–2240. CrossRef  Google Scholar  PubMed 
  138. Miao, X., Wu, X., Li, R., Chen, K., & Yao, L. (2011). Altered connectivity pattern of hubs in default-mode network with Alzheimer’s disease: An Granger causality modeling approach. PLoS One, 6(10), e25546. CrossRef  Google Scholar  PubMed 
  139. Mielke, M.M., Okonkwo, O.C., Oishi, K., Mori, S., Tighe, S., Miller, M.I., & Lyketsos, C.G. (2012). Fornix integrity and hippocampal volume predict memory decline and progression to Alzheimer’s disease. Alzheimers & Dementia, 8(2), 105–113. CrossRef  Google Scholar  PubMed 
  140. Molinuevo, J.L., Ripolles, P., Simo, M., Llado, A., Olives, J., Balasa, M., & Rami, L. (2014). White matter changes in preclinical Alzheimer’s disease: A magnetic resonance imaging-diffusion tensor imaging study on cognitively normal older people with positive amyloid beta protein 42 levels. Neurobiology of Aging, 35(12), 2671–2680. CrossRef  Google Scholar 
  141. Moretti, D.V., Paternico, D., Binetti, G., Zanetti, O., & Frisoni, G.B. (2012). EEG markers are associated to gray matter changes in thalamus and basal ganglia in subjects with mild cognitive impairment. Neuroimage, 60(1), 489–496. CrossRef  Google Scholar 
  142. Mori, S., Crain, B.J., Chacko, V.P., & Van Zijl, P.C.M. (1999). Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Annals of Neurology, 45(2), 265–269.3.0.CO;2-3>CrossRef Google Scholar 
  143. Mori, S., & Zhang, J. (2006). Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron, 51(5), 527–539. CrossRef  Google Scholar  PubMed 
  144. Mormino, E.C., Smiljic, A., Hayenga, A.O., Onami, S.H., Greicius, M.D., Rabinovici, G.D., & Jagust, W.J. (2011). Relationships between beta-amyloid and functional connectivity in different components of the default mode network in aging. Cerebral Cortex, 21(10), 2399–2407. CrossRef  Google Scholar 
  145. Morris, J.C., Roe, C.M., Xiong, C., Fagan, A.M., Goate, A.M., Holtzman, D.M., & Mintun, M.A. (2010). APOE predicts amyloid-beta but not tau Alzheimer pathology in cognitively normal aging. Annals of Neurology, 67(1), 122–131. CrossRef  Google Scholar 
  146. Myers, N., Pasquini, L., Gottler, J., Grimmer, T., Koch, K., Ortner, M., & Sorg, C. (2014). Within-patient correspondence of amyloid-beta and intrinsic network connectivity in Alzheimer’s disease. Brain, 137(Pt 7), 2052–2064. CrossRef  Google Scholar  PubMed 
  147. Naggara, O., Oppenheim, C., Rieu, D., Raoux, N., Rodrigo, S., Dalla Barba, G., & Meder, J.F. (2006). Diffusion tensor imaging in early Alzheimer’s disease. Psychiatry Research, 146(3), 243–249. CrossRef  Google Scholar  PubMed 
  148. Nath, S., Agholme, L., Kurudenkandy, F.R., Granseth, B., Marcusson, J., & Hallbeck, M. (2012). Spreading of neurodegenerative pathology via neuron-to-neuron transmission of beta-amyloid. The Journal of Neuroscience, 32(26), 8767–8777. CrossRef  Google Scholar 
  149. O’Dwyer, L., Lamberton, F., Bokde, A.L., Ewers, M., Faluyi, Y.O., Tanner, C., & Hampel, H. (2012). Using support vector machines with multiple indices of diffusion for automated classification of mild cognitive impairment. PLoS One, 7(2), e32441. CrossRef  Google Scholar 
  150. Oh, H., & Jagust, W.J. (2013). Frontotemporal network connectivity during memory encoding is increased with aging and disrupted by beta-amyloid. The Journal of Neuroscience, 33(47), 18425–18437. CrossRef  Google Scholar  PubMed 
  151. Parihar, M.S., & Brewer, G.J. (2010). Amyloid-beta as a modulator of synaptic plasticity. Journal of Alzheimer’s Disease, 22(3), 741–763. CrossRef  Google Scholar  PubMed 
  152. Patel, K.T., Stevens, M.C., Pearlson, G.D., Winkler, A.M., Hawkins, K.A., Skudlarski, P., & Bauer, L.O. (2013). Default mode network activity and white matter integrity in healthy middle-aged ApoE4 carriers. Brain Imaging and Behavior, 7(1), 60–67. CrossRef  Google Scholar  PubMed 
  153. Patriat, R., Molloy, E.K., Meier, T.B., Kirk, G.R., Nair, V.A., Meyerand, M.E., & Birn, R.M. (2013). The effect of resting condition on resting-state fMRI reliability and consistency: A comparison between resting with eyes open, closed, and fixated. Neuroimage, 78, 463–473. CrossRef  Google Scholar  PubMed 
  154. Perrotin, A., Desgranges, B., Landeau, B., Mezenge, F., La Joie, R., Egret, S., & Chetelat, G. (2015). Anosognosia in Alzheimer disease: Disconnection between memory and self-related brain networks. Annals of Neurology, 78, 477–486. CrossRef  Google Scholar 
  155. Persson, J., Lind, J., Larsson, A., Ingvar, M., Sleegers, K., Van Broeckhoven, C., & Nyberg, L. (2008). Altered deactivation in individuals with genetic risk for Alzheimer’s disease. Neuropsychologia, 46(6), 1679–1687. CrossRef  Google Scholar  PubMed 
  156. Pievani, M., de Haan, W., Wu, T., Seeley, W.W., & Frisoni, G.B. (2011). Functional network disruption in the degenerative dementias. The Lancet. Neurology, 10(9), 829–843. CrossRef  Google Scholar 
  157. Puzzo, D., Privitera, L., Leznik, E., Fa, M., Staniszewski, A., Palmeri, A., & Arancio, O. (2008). Picomolar amyloid-beta positively modulates synaptic plasticity and memory in hippocampus. The Journal of Neuroscience, 28(53), 14537–14545. CrossRef  Google Scholar 
  158. Racine, A.M., Adluru, N., Alexander, A.L., Christian, B.T., Okonkwo, O.C., Oh, J., & Johnson, S.C. (2014). Associations between white matter microstructure and amyloid burden in preclinical Alzheimer’s disease: A multimodal imaging investigation. Neuroimage. Clinical, 4, 604–614. CrossRef  Google Scholar  PubMed 
  159. Raichle, M.E., MacLeod, A.M., Snyder, A.Z., Powers, W.J., Gusnard, D.A., & Shulman, G.L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 676–682. CrossRef  Google Scholar 
  160. Raj, A., Kuceyeski, A., & Weiner, M. (2012). A network diffusion model of disease progression in dementia. Neuron, 73(6), 1204–1215. CrossRef  Google Scholar  PubMed 
  161. Raj, A., LoCastro, E., Kuceyeski, A., Tosun, D., Relkin, N., & Weiner, M. (2015). Network diffusion model of progression predicts longitudinal patterns of atrophy and metabolism in Alzheimer’s Disease. Cell Reports. [Epub ahead of print]. CrossRef  Google Scholar 
  162. Rankin, K.P., Gorno-Tempini, M.L., Allison, S.C., Stanley, C.M., Glenn, S., Weiner, M.W., & Miller, B.L. (2006). Structural anatomy of empathy in neurodegenerative disease. Brain, 129, 2945–2956. CrossRef  Google Scholar  PubMed 
  163. Ray, N.J., Metzler-Baddeley, C., Khondoker, M.R., Grothe, M.J., Teipel, S., Wright, P., & O’Sullivan, M.J. (2015). Cholinergic Basal forebrain structure influences the reconfiguration of white matter connections to support residual memory in mild cognitive impairment. The Journal of Neuroscience, 35(2), 739–747. CrossRef  Google Scholar  PubMed 
  164. Reijmer, Y.D., Leemans, A., Caeyenberghs, K., Heringa, S.M., Koek, H.L., & Biessels, G.J. (2013). Disruption of cerebral networks and cognitive impairment in Alzheimer disease. Neurology, 80(15), 1370–1377. CrossRef  Google Scholar  PubMed 
  165. Reijmer, Y.D., Leemans, A., Heringa, S.M., Wielaard, I., Jeurissen, B., Koek, H.L., & Biessels, G.J. (2012). Improved sensitivity to cerebral white matter abnormalities in Alzheimer’s disease with spherical deconvolution based tractography. PLoS One, 7(8), e44074. CrossRef  Google Scholar  PubMed 
  166. Ringman, J.M., O’Neill, J., Geschwind, D., Medina, L., Apostolova, L.G., Rodriguez, Y., & Bartzokis, G. (2007). Diffusion tensor imaging in preclinical and presymptomatic carriers of familial Alzheimer’s disease mutations. Brain, 130(Pt 7), 1767–1776. CrossRef  Google Scholar 
  167. Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. Neuroimage, 52(3), 1059–1069. CrossRef  Google Scholar 
  168. Ryan, N.S., Keihaninejad, S., Shakespeare, T.J., Lehmann, M., Crutch, S.J., Malone, I.B., & Fox, N.C. (2013). Magnetic resonance imaging evidence for presymptomatic change in thalamus and caudate in familial Alzheimer’s disease. Brain, 136(Pt 5), 1399–1414. CrossRef  Google Scholar  PubMed 
  169. Sadaghiani, S., Scheeringa, R., Lehongre, K., Morillon, B., Giraud, A.L., & Kleinschmidt, A. (2010). Intrinsic connectivity networks, alpha oscillations, and tonic alertness: A simultaneous electroencephalography/functional magnetic resonance imaging study. The Journal of Neuroscience, 30(30), 10243–10250. CrossRef  Google Scholar  PubMed 
  170. Salami, A., Pudas, S., & Nyberg, L. (2014). Elevated hippocampal resting-state connectivity underlies deficient neurocognitive function in aging. Proceedings of the National Academy of Sciences of the United States of America, 111(49), 17654–17659. CrossRef  Google Scholar 
  171. Sanz-Arigita, E.J., Schoonheim, M.M., Damoiseaux, J.S., Rombouts, S.A., Maris, E., Barkhof, F., & Stam, C.J. (2010). Loss of ‘small-world’ networks in Alzheimer’s disease: Graph analysis of FMRI resting-state functional connectivity. PLoS One, 5(11), e13788. CrossRef  Google Scholar  PubMed 
  172. Scola, E., Bozzali, M., Agosta, F., Magnani, G., Franceschi, M., Sormani, M.P., & Falini, A. (2010). A diffusion tensor MRI study of patients with MCI and AD with a 2-year clinical follow-up. Journal of Neurology, Neurosurgery and Psychiatry, 81(7), 798–805. CrossRef  Google Scholar 
  173. Seeley, W.W., Allman, J.M., Carlin, D.A., Crawford, R.K., Macedo, M.N., Greicius, M.D., & Miller, B.L. (2007). Divergent social functioning in behavioral variant frontotemporal dementia and Alzheimer disease: Reciprocal networks and neuronal evolution. Alzheimer Disease and Associated Disorders, 21(4), S50–S57. CrossRef  Google Scholar 
  174. Seeley, W.W., Crawford, R.K., Zhou, J., Miller, B.L., & Greicius, M.D. (2009). Neurodegenerative diseases target large-scale human brain networks. Neuron, 62(1), 42–52. CrossRef  Google Scholar 
  175. Selnes, P., Aarsland, D., Bjornerud, A., Gjerstad, L., Wallin, A., Hessen, E., & Fladby, T. (2013). Diffusion tensor imaging surpasses cerebrospinal fluid as predictor of cognitive decline and medial temporal lobe atrophy in subjective cognitive impairment and mild cognitive impairment. Journal of Alzheimer’s Disease, 33(3), 723–736. Google Scholar  PubMed 
  176. Sepulcre, J., Sabuncu, M.R., Becker, A., Sperling, R., & Johnson, K.A. (2013). In vivo characterization of the early states of the amyloid-beta network. Brain, 136(Pt 7), 2239–2252. CrossRef  Google Scholar 
  177. Sepulcre, J., Sabuncu, M.R., Yeo, T.B., Liu, H., & Johnson, K.A. (2012). Stepwise connectivity of the modal cortex reveals the multimodal organization of the human brain. The Journal of Neuroscience, 32(31), 10649–10661. CrossRef  Google Scholar 
  178. Sexton, C.E., Mackay, C.E., Lonie, J.A., Bastin, M.E., Terriere, E., O’Carroll, R.E., & Ebmeier, K.P. (2010). MRI correlates of episodic memory in Alzheimer’s disease, mild cognitive impairment, and healthy aging. Psychiatry Research, 184(1), 57–62. CrossRef  Google Scholar  PubMed 
  179. Shankar, G.M., Bloodgood, B.L., Townsend, M., Walsh, D.M., Selkoe, D.J., & Sabatini, B.L. (2007). Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. The Journal of Neuroscience, 27(11), 2866–2875. CrossRef  Google Scholar  PubMed 
  180. Shao, J., Myers, N., Yang, Q., Feng, J., Plant, C., Bohm, C., & Sorg, C. (2012). Prediction of Alzheimer’s disease using individual structural connectivity networks. Neurobiology of Aging, 33(12), 2756–2765. CrossRef  Google Scholar  PubMed 
  181. Sheline, Y.I., Morris, J.C., Snyder, A.Z., Price, J.L., Yan, Z., D’Angelo, G., & Mintun, M.A. (2010). APOE4 allele disrupts resting state fMRI connectivity in the absence of amyloid plaques or decreased CSF Abeta42. The Journal of Neuroscience, 30(50), 17035–17040. CrossRef  Google Scholar  PubMed 
  182. Sheline, Y.I., Raichle, M.E., Snyder, A.Z., Morris, J.C., Head, D., Wang, S., & Mintun, M.A. (2010). Amyloid plaques disrupt resting state default mode network connectivity in cognitively normal elderly. Biological Psychiatry, 67(6), 584–587. CrossRef  Google Scholar 
  183. Shulman, G.L., Corbetta, M., Fiez, J.A., Buckner, R.L., Miezin, F.M., Raichle, M.E., & Petersen, S.E. (1997). Searching for activations that generalize over tasks. Human Brain Mapping, 5(4), 317–322.3.0.CO;2-A>CrossRef Google Scholar 
  184. Smith, S.M., Beckmann, C.F., Andersson, J., Auerbach, E.J., Bijsterbosch, J., Douaud, G., & Glasser, M.F. (2013). Resting-state fMRI in the Human Connectome Project. Neuroimage, 80, 144–168. CrossRef  Google Scholar  PubMed 
  185. Smith, S.M., Fox, P.T., Miller, K.L., Glahn, D.C., Fox, P.M., Mackay, C.E., & Beckmann, C.F. (2009). Correspondence of the brain’s functional architecture during activation and rest. Proceedings of the National Academy of Sciences of the United States of America, 106(31), 13040–13045. CrossRef  Google Scholar 
  186. Soldner, J., Meindl, T., Koch, W., Bokde, A.L., Reiser, M.F., Moller, H.J., & Teipel, S.J. (2012). [Structural and functional neuronal connectivity in Alzheimer’s disease: A combined DTI and fMRI study]. Der Nervenarzt, 83(7), 878–887. CrossRef  Google Scholar 
  187. Sollberger, M., Stanley, C.M., Wilson, S.M., Gyurak, A., Beckman, V., Growdon, M., & Rankin, K.P. (2009). Neural basis of interpersonal traits in neurodegenerative diseases. Neuropsychologia, 47(13), 2812–2827. CrossRef  Google Scholar 
  188. Song, S.K., Sun, S.W., Ju, W.K., Lin, S.J., Cross, A.H., & Neufeld, A.H. (2003). Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage, 20(3), 1714–1722. CrossRef  Google Scholar  PubMed 
  189. Sorg, C., Riedl, V., Muhlau, M., Calhoun, V.D., Eichele, T., Laer, L., & Wohlschlager, A.M. (2007). Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 104(47), 18760–18765. CrossRef  Google Scholar 
  190. Sperling, R.A., Laviolette, P.S., O’Keefe, K., O’Brien, J., Rentz, D.M., Pihlajamaki, M., & Johnson, K.A. (2009). Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron, 63(2), 178–188. CrossRef  Google Scholar  PubMed 
  191. Spires-Jones, T.L., & Hyman, B.T. (2014). The intersection of amyloid beta and tau at synapses in Alzheimer’s disease. Neuron, 82(4), 756–771. CrossRef  Google Scholar  PubMed 
  192. Sporns, O., Honey, C.J., & Kotter, R. (2007). Identification and classification of hubs in brain networks. PLoS One, 2(10), e1049. CrossRef  Google Scholar  PubMed 
  193. Stahl, R., Dietrich, O., Teipel, S.J., Hampel, H., Reiser, M.F., & Schoenberg, S.O. (2007). White matter damage in Alzheimer disease and mild cognitive impairment: Assessment with diffusion-tensor MR imaging and parallel imaging techniques. Radiology, 243(2), 483–492. CrossRef  Google Scholar 
  194. Stenset, V., Bjornerud, A., Fjell, A.M., Walhovd, K.B., Hofoss, D., Due-Tonnessen, P., & Fladby, T. (2011). Cingulum fiber diffusivity and CSF T-tau in patients with subjective and mild cognitive impairment. Neurobiology of Aging, 32(4), 581–589. CrossRef  Google Scholar  PubMed 
  195. Sturm, V.E., McCarthy, M.E., Yun, I., Madan, A., Yuan, J.W., Holley, S.R., & Levenson, R.W. (2011). Mutual gaze in Alzheimer’s disease, frontotemporal and semantic dementia couples. Social Cognitive and Affective Neuroscience, 6(3), 359–367. CrossRef  Google Scholar  PubMed 
  196. Sturm, V.E., Yokoyama, J.S., Seeley, W.W., Kramer, J.H., Miller, B.L., & Rankin, K.P. (2013). Heightened emotional contagion in mild cognitive impairment and Alzheimer’s disease is associated with temporal lobe degeneration. Proceedings of the National Academy of Sciences of the United States of America, 110(24), 9944–9949. CrossRef  Google Scholar  PubMed 
  197. Supekar, K., Menon, V., Rubin, D., Musen, M., & Greicius, M.D. (2008). Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Computational Biology, 4(6), e1000100. CrossRef  Google Scholar 
  198. Tahmasian, M., Pasquini, L., Scherr, M., Meng, C., Forster, S., Mulej Bratec, S., & Drzezga, A. (2015). The lower hippocampus global connectivity, the higher its local metabolism in Alzheimer disease. Neurology, 84(19), 1956–1963. CrossRef  Google Scholar 
  199. Teipel, S., Ehlers, I., Erbe, A., Holzmann, C., Lau, E., Hauenstein, K., & Berger, C. (2015). Structural connectivity changes underlying altered working memory networks in mild cognitive impairment: A three-way image fusion analysis. J Neuroimaging, 25(4), 634–642. CrossRef  Google Scholar  PubMed 
  200. Teipel, S.J., Bokde, A.L., Meindl, T., Amaro, E. Jr., Soldner, J., Reiser, M.F., & Hampel, H. (2010). White matter microstructure underlying default mode network connectivity in the human brain. Neuroimage, 49(3), 2021–2032. CrossRef  Google Scholar  PubMed 
  201. Teipel, S.J., Grothe, M.J., Filippi, M., Fellgiebel, A., Dyrba, M., Frisoni, G.B., & group, E.S. (2014). Fractional anisotropy changes in Alzheimer’s disease depend on the underlying fiber tract architecture: A multiparametric DTI study using joint independent component analysis. Journal of Alzheimer’s Disease, 41(1), 69–83. Google Scholar  PubMed 
  202. Teipel, S.J., Lerche, M., Kilimann, I., O’Brien, K., Grothe, M., Meyer, P., & Hauenstein, K. (2014). Decline of fiber tract integrity over the adult age range: A diffusion spectrum imaging study. Journal of Magnetic Resonance Imaging, 40(2), 348–359. CrossRef  Google Scholar  PubMed 
  203. Teipel, S.J., Meindl, T., Grinberg, L., Grothe, M., Cantero, J.L., Reiser, M.F., & Hampel, H. (2011). The cholinergic system in mild cognitive impairment and Alzheimer’s disease: An in vivo MRI and DTI study. Human Brain Mapping, 32(9), 1349–1362. CrossRef  Google Scholar 
  204. Teipel, S.J., Meindl, T., Wagner, M., Stieltjes, B., Reuter, S., Hauenstein, K.H., & Hampel, H. (2010). Longitudinal changes in fiber tract integrity in healthy aging and mild cognitive impairment: A DTI follow-up study. Journal of Alzheimer’s Disease, 22(2), 507–522. CrossRef  Google Scholar 
  205. Teipel, S.J., Pogarell, O., Meindl, T., Dietrich, O., Sydykova, D., Hunklinger, U., & Hampel, H. (2009). Regional networks underlying interhemispheric connectivity: An EEG and DTI study in healthy ageing and amnestic mild cognitive impairment. Human Brain Mapping, 30(7), 2098–2119. CrossRef  Google Scholar  PubMed 
  206. Teipel, S.J., Reuter, S., Stieltjes, B., Acosta-Cabronero, J., Ernemann, U., Fellgiebel, A., & Hampel, H. (2011). Multicenter stability of diffusion tensor imaging measures: A European clinical and physical phantom study. Psychiatry Research, 194(3), 363–371. CrossRef  Google Scholar  PubMed 
  207. Teipel, S.J., Sabri, O., Grothe, M., Barthel, H., Prvulovic, D., Buerger, K., & Hampel, H. (2013). Perspectives for multimodal neurochemical and imaging biomarkers in Alzheimer’s disease. Journal of Alzheimer’s Disease, 33(Suppl. 1), S329–S347. Google Scholar 
  208. Teipel, S.J., Wegrzyn, M., Meindl, T., Frisoni, G., Bokde, A.L., Fellgiebel, A., & Ewers, M. (2012). Anatomical MRI and DTI in the diagnosis of Alzheimer’s disease: A European multicenter study. Journal of Alzheimer’s Disease, 31(Suppl. 3), S33–S47. Google Scholar 
  209. Thal, D.R., Attems, J., & Ewers, M. (2014). Spreading of amyloid, tau, and microvascular pathology in Alzheimer’s disease: Findings from neuropathological and neuroimaging studies. Journal of Alzheimer’s Disease, 42(Suppl. 4), S421–S429. Google Scholar 
  210. van den Heuvel, M., Mandl, R., Luigjes, J., & Hulshoff Pol, H. (2008). Microstructural organization of the cingulum tract and the level of default mode functional connectivity. The Journal of Neuroscience, 28(43), 10844–10851. CrossRef  Google Scholar  PubMed 
  211. van den Heuvel, M.P., Mandl, R.C., Kahn, R.S., & Hulshoff Pol, H.E. (2009). Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Human Brain Mapping, 30(10), 3127–3141. CrossRef  Google Scholar 
  212. van den Heuvel, M.P., & Sporns, O. (2011). Rich-club organization of the human connectome. Journal of Neuroscience, 31(44), 15775–15786. CrossRef  Google Scholar 
  213. Vecchio, F., Miraglia, F., Curcio, G., Altavilla, R., Scrascia, F., Giambattistelli, F., & Rossini, P.M. (2015). Cortical brain connectivity evaluated by graph theory in dementia: A correlation study between functional and structural data. Journal of Alzheimer’s Disease, 45, 745–756. Google Scholar 
  214. Vidal-Pineiro, D., Valls-Pedret, C., Fernandez-Cabello, S., Arenaza-Urquijo, E.M., Sala-Llonch, R., Solana, E., & Bartres-Faz, D. (2014). Decreased default mode network connectivity correlates with age-associated structural and cognitive changes. Frontiers in Aging Neuroscience, 6, 256. Google Scholar  PubMed 
  215. Villain, N., Fouquet, M., Baron, J.C., Mezenge, F., Landeau, B., de La Sayette, V., & Chetelat, G. (2010). Sequential relationships between grey matter and white matter atrophy and brain metabolic abnormalities in early Alzheimer’s disease. Brain, 133(11), 3301–3314. CrossRef  Google Scholar  PubMed 
  216. Villemagne, V.L., Pike, K.E., Chetelat, G., Ellis, K.A., Mulligan, R.S., Bourgeat, P., & Rowe, C.C. (2011). Longitudinal assessment of Abeta and cognition in aging and Alzheimer disease. Annals of Neurology, 69(1), 181–192. CrossRef  Google Scholar  PubMed 
  217. Vincent, J.L., Patel, G.H., Fox, M.D., Snyder, A.Z., Baker, J.T., Van Essen, D.C., & Raichle, M.E. (2007). Intrinsic functional architecture in the anaesthetized monkey brain. Nature, 447(7140), 83–86. CrossRef  Google Scholar  PubMed 
  218. Voineskos, A.N., Lerch, J.P., Felsky, D., Shaikh, S., Rajji, T.K., Miranda, D., & Kennedy, J.L. (2011). The brain-derived neurotrophic factor Val66Met polymorphism and prediction of neural risk for Alzheimer disease. Archives of General Psychiatry, 68(2), 198–206. CrossRef  Google Scholar  PubMed 
  219. Wang, D., Liu, B., Qin, W., Wang, J., Zhang, Y., Jiang, T., & Yu, C. (2013). KIBRA gene variants are associated with synchronization within the default-mode and executive control networks. Neuroimage, 69, 213–222. CrossRef  Google Scholar  PubMed 
  220. Wang, J., Wang, X., He, Y., Yu, X., Wang, H., & He, Y. (2015). Apolipoprotein E epsilon4 modulates functional brain connectome in Alzheimer’s disease. Human Brain Mapping, 36, 1828–1846. CrossRef  Google Scholar  PubMed 
  221. Wang, K., Liang, M., Wang, L., Tian, L., Zhang, X., Li, K., & Jiang, T. (2007). Altered functional connectivity in early Alzheimer’s disease: A resting-state fMRI study. Human Brain Mapping, 28(10), 967–978. CrossRef  Google Scholar  PubMed 
  222. Wedeen, V.J., Wang, R.P., Schmahmann, J.D., Benner, T., Tseng, W.Y., Dai, G., & de Crespigny, A.J. (2008). Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Neuroimage, 41(4), 1267–1277. CrossRef  Google Scholar  PubMed 
  223. Wee, C.Y., Yap, P.T., Zhang, D., Denny, K., Browndyke, J.N., Potter, G.G., & Shen, D. (2012). Identification of MCI individuals using structural and functional connectivity networks. Neuroimage, 59(3), 2045–2056. CrossRef  Google Scholar  PubMed 
  224. Weiler, M., de Campos, B.M., Nogueira, M.H., Pereira Damasceno, B., Cendes, F., & Balthazar, M.L. (2014). Structural connectivity of the default mode network and cognition in Alzheimers disease. Psychiatry Research, 223(1), 15–22. CrossRef  Google Scholar  PubMed 
  225. Westlye, L.T., Reinvang, I., Rootwelt, H., & Espeseth, T. (2012). Effects of APOE on brain white matter microstructure in healthy adults. Neurology, 79(19), 1961–1969. CrossRef  Google Scholar  PubMed 
  226. Whitwell, J.L., Przybelski, S.A., Weigand, S.D., Knopman, D.S., Boeve, B.F., Petersen, R.C., & Jack, C.R. Jr. (2007). 3D maps from multiple MRI illustrate changing atrophy patterns as subjects progress from mild cognitive impairment to Alzheimer’s disease. Brain, 130(Pt 7), 1777–1786. CrossRef  Google Scholar  PubMed 
  227. Xie, S., Xiao, J.X., Gong, G.L., Zang, Y.F., Wang, Y.H., Wu, H.K., & Jiang, X.X. (2006). Voxel-based detection of white matter abnormalities in mild Alzheimer disease. Neurology, 66(12), 1845–1849. CrossRef  Google Scholar 
  228. Xiong, C., Roe, C.M., Buckles, V., Fagan, A., Holtzman, D., Balota, D., & Morris, J.C. (2011). Role of family history for Alzheimer biomarker abnormalities in the adult children study. Archives of Neurology, 68(10), 1313–1319. CrossRef  Google Scholar  PubMed 
  229. Yakushev, I., Schreckenberger, M., Muller, M.J., Schermuly, I., Cumming, P., Stoeter, P., & Fellgiebel, A. (2011). Functional implications of hippocampal degeneration in early Alzheimer’s disease: A combined DTI and PET study. European Journal of Nuclear Medicine and Molecular Imaging, 38(12), 2219–2227. CrossRef  Google Scholar  PubMed 
  230. Yeo, B.T., Krienen, F.M., Sepulcre, J., Sabuncu, M.R., Lashkari, D., Hollinshead, M., & Buckner, R.L. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106(3), 1125–1165. Google Scholar  PubMed 
  231. Zhang, H.Y., Wang, S.J., Liu, B., Ma, Z.L., Yang, M., Zhang, Z.J., & Teng, G.J. (2010). Resting brain connectivity: Changes during the progress of Alzheimer disease. Radiology, 256(2), 598–606. CrossRef  Google Scholar  PubMed 
  232. Zhang, Y., Schuff, N., Jahng, G.H., Bayne, W., Mori, S., Schad, L., & Weiner, M.W. (2007). Diffusion tensor imaging of cingulum fibers in mild cognitive impairment and Alzheimer disease. Neurology, 68(1), 13–19. CrossRef  Google Scholar  PubMed 
  233. Zhou, J., Gennatas, E.D., Kramer, J.H., Miller, B.L., & Seeley, W.W. (2012). Predicting regional neurodegeneration from the healthy brain functional connectome. Neuron, 73(6), 1216–1227. CrossRef  Google Scholar 
  234. Zhou, J., Greicius, M.D., Gennatas, E.D., Growdon, M.E., Jang, J.Y., Rabinovici, G.D., & Seeley, W.W. (2010). Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer’s disease. Brain, 133(Pt 5), 1352–1367. CrossRef  Google Scholar 
  235. Zhuang, L., Sachdev, P.S., Trollor, J.N., Kochan, N.A., Reppermund, S., Brodaty, H., & Wen, W. (2012). Microstructural white matter changes in cognitively normal individuals at risk of amnestic MCI. Neurology, 79(8), 748–754. CrossRef  Google Scholar  PubMed 
  236. Zuo, X.N., Ehmke, R., Mennes, M., Imperati, D., Castellanos, F.X., Sporns, O., & Milham, M.P. (2012). Network centrality in the human functional connectome. Cerebral Cortex, 22(8), 1862–1875. CrossRef  Google Scholar  PubMed 
Imaging the "At-Risk" Brain: Future Directions
Author(s)
  • Maki S. Koyama | Child Mind Institute, New York, New York, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York
  • Adriana Di Martino | The Child Study Center at NYU Langone Medical Center, New York, New York
  • Francisco X. Castellanos | Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, The Child Study Center at NYU Langone Medical Center, New York, New York
  • Erica J. Ho | Child Mind Institute, New York, New York
  • Enitan Marcelle | Child Mind Institute, New York, New York
  • Bennett Leventhal | Department of Psychiatry University of California–San Francisco, San Francisco, California
  • Michael P. Milham | Child Mind Institute, New York, New York, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York

Correspondence

Disclosures
The authors declare that there are no conflicts of interest.

Abstract
Objectives:

Clinical neuroscience is increasingly turning to imaging the human brain for answers to a range of questions and challenges. To date, the majority of studies have focused on the neural basis of current psychiatric symptoms, which can facilitate the identification of neurobiological markers for diagnosis. However, the increasing availability and feasibility of using imaging modalities, such as diffusion imaging and resting-state fMRI, enable longitudinal mapping of brain development. This shift in the field is opening the possibility of identifying predictive markers of risk or prognosis, and also represents a critical missing element for efforts to promote personalized or individualized medicine in psychiatry (i.e., stratified psychiatry).

Methods:

The present work provides a selective review of potentially high-yield populations for longitudinal examination with MRI, based upon our understanding of risk from epidemiologic studies and initial MRI findings.

Results:

Our discussion is organized into three topic areas: (1) practical considerations for establishing temporal precedence in psychiatric research; (2) readiness of the field for conducting longitudinal MRI, particularly for neurodevelopmental questions; and (3) illustrations of high-yield populations and time windows for examination that can be used to rapidly generate meaningful and useful data. Particular emphasis is placed on the implementation of time-appropriate, developmentally informed longitudinal designs, capable of facilitating the identification of biomarkers predictive of risk and prognosis.

Conclusions:

Strategic longitudinal examination of the brain at-risk has the potential to bring the concepts of early intervention and prevention to psychiatry. (JINS, 2016,22, 164–179)

Bibliography
  1. Aarnoudse-Moens, C.S., Weisglas-Kuperus, N., van Goudoever, J.B., & Oosterlaan, J. (2009). Meta-analysis of neurobehavioral outcomes in very preterm and/or very low birth weight children. Pediatrics, 124(2), 717–728. doi:10.1542/peds.2008-2816 CrossRef  Google Scholar  PubMed 
  2. Alexander, A.L., Hurley, S.A., Samsonov, A.A., Adluru, N., Hosseinbor, A.P., Mossahebi, P.,& Field, A.S. (2011). Characterization of cerebral white matter properties using quantitative magnetic resonance imaging stains. Brain Connectivity, 1(6), 423–446. doi:10.1089/brain.2011.0071 CrossRef  Google Scholar  PubMed 
  3. Allin, M., Walshe, M., Fern, A., Nosarti, C., Cuddy, M., Rifkin, L., & Wyatt, J. (2008). Cognitive maturation in preterm and term born adolescents. Journal of Neurology, Neurosurgery, & Psychiatry, 79(4), 381–386. doi:10.1136/jnnp.2006.110858 CrossRef  Google Scholar 
  4. Almli, C.R., Rivkin, M.J., & McKinstry, R.C., & Brain Development Cooperative, Group. (2007). The NIH MRI study of normal brain development (Objective-2): Newborns, infants, toddlers, and preschoolers. Neuroimage, 35(1), 308–325. doi:10.1016/j.neuroimage.2006.08.058 CrossRef  Google Scholar 
  5. Ameis, S.H., & Catani, M. (2015). Altered white matter connectivity as a neural substrate for social impairment in Autism Spectrum Disorder. Cortex, 62, 158–181. doi:10.1016/j.cortex.2014.10.014 CrossRef  Google Scholar  PubMed 
  6. Anderson, A.L., & Thomason, M.E. (2013). Functional plasticity before the cradle: A review of neural functional imaging in the human fetus. Neuroscience & Biobehavioral Reviews, 37(9 Pt B), 2220–2232. doi:10.1016/j.neubiorev.2013.03.013 CrossRef  Google Scholar 
  7. Anderson, D.K., Lord, C., Risi, S., DiLavore, P.S., Shulman, C., Thurm, A., & Pickles, A. (2007). Patterns of growth in verbal abilities among children with autism spectrum disorder. Journal of Consulting and Clinical Psychology, 75(4), 594–604. doi:10.1037/0022-006X.75.4.594 CrossRef  Google Scholar  PubMed 
  8. Aylward, E.H., Richards, T.L., Berninger, V.W., Nagy, W.E., Field, K.M., Grimme, A.C., & Cramer, S.C. (2003). Instructional treatment associated with changes in brain activation in children with dyslexia. Neurology, 61(2), 212–219. CrossRef  Google Scholar  PubMed 
  9. Baghdadli, A., Picot, M.C., Michelon, C., Bodet, J., Pernon, E., Burstezjn, C., & Aussilloux, C. (2007). What happens to children with PDD when they grow up? Prospective follow-up of 219 children from preschool age to mid-childhood. Acta Psychiatrica Scandinavica, 115(5), 403–412. doi:10.1111/j.1600-0447.2006.00898.x CrossRef  Google Scholar 
  10. Bal, V.H., Kim, S.H., Cheong, D., & Lord, C. (2015). Daily living skills in individuals with autism spectrum disorder from 2 to 21 years of age. Autism, 19(7), 774–784. doi:10.1177/1362361315575840 CrossRef  Google Scholar  PubMed 
  11. Barquero, L.A., Davis, N., & Cutting, L.E. (2014). Neuroimaging of reading intervention: A systematic review and activation likelihood estimate meta-analysis. PLoS One, 9(1), e83668. doi:10.1371/journal.pone.0083668 CrossRef  Google Scholar  PubMed 
  12. Barre, N., Morgan, A., Doyle, L.W., & Anderson, P.J. (2011). Language abilities in children who were very preterm and/or very low birth weight: A meta-analysis. Journal of Pediatrics, 158(5), 766–774 e761. doi:10.1016/j.jpeds.2010.10.032 CrossRef  Google Scholar  PubMed 
  13. Barttfeld, P., Uhrig, L., Sitt, J.D., Sigman, M., Jarraya, B., & Dehaene, S. (2015). Signature of consciousness in the dynamics of resting-state brain activity. Proceedings of the National Academy of Sciences of the United States of America, 112(3), 887–892. doi:10.1073/pnas.1418031112 CrossRef  Google Scholar  PubMed 
  14. Bartzokis, G. (2004). Quadratic trajectories of brain myelin content: Unifying construct for neuropsychiatric disorders. Neurobiology of Aging, 25(1), 49–62. doi:http://dx.doi.org/10.1016/j.neurobiolaging.2003.08.001 CrossRef  Google Scholar 
  15. Basser, P.J., & Pierpaoli, C. (1996). Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. Journal of Magnetic Resonance, Series B, 111(3), 209–219. CrossRef  Google Scholar 
  16. Beesdo, K., Pine, D.S., Lieb, R., & Wittchen, H.U. (2010). Incidence and risk patterns of anxiety and depressive disorders and categorization of generalized anxiety disorder. Archives of General Psychiatry, 67(1), 47–57. doi:10.1001/archgenpsychiatry.2009.177 CrossRef  Google Scholar  PubMed 
  17. Behrman, R.E., & Butler, A.S. (2007). Preterm birth: Causes, consequences, and prevention. Washington, DC: National Academies Press. Google Scholar 
  18. Billstedt, E., Gillberg, I.C., & Gillberg, C. (2005). Autism after adolescence: Population-based 13- to 22-year follow-up study of 120 individuals with autism diagnosed in childhood. Journal of Autism and Developmental Disorders, 35(3), 351–360. CrossRef  Google Scholar  PubMed 
  19. Blasi, A., Lloyd-Fox, S., Sethna, V., Brammer, M.J., Mercure, E., Murray, L., & Johnson, M.H. (2015). Atypical processing of voice sounds in infants at risk for autism spectrum disorder. Cortex, 71, 122–133. doi:10.1016/j.cortex.2015.06.015 CrossRef  Google Scholar  PubMed 
  20. Bora, E., Harrison, B.J., Davey, C.G., Yucel, M., & Pantelis, C. (2012). Meta-analysis of volumetric abnormalities in cortico-striatal-pallidal-thalamic circuits in major depressive disorder. Psychological Medicine, 42(4), 671–681. doi:10.1017/S0033291711001668 CrossRef  Google Scholar  PubMed 
  21. Botteron, K.N., Raichle, M.E., Drevets, W.C., Heath, A.C., & Todd, R.D. (2002). Volumetric reduction in left subgenual prefrontal cortex in early onset depression. Biological Psychiatry, 51(4), 342–344. CrossRef  Google Scholar  PubMed 
  22. Bremner, J.D. (2004). Brain imaging in anxiety disorders. Expert Review of Neurotherapeutics, 4(2), 275–284. doi:10.1586/14737175.4.2.275 CrossRef  Google Scholar  PubMed 
  23. Brown, C.J., Miller, S.P., Booth, B.G., Andrews, S., Chau, V., Poskitt, K.J., & Hamarneh, G. (2014). Structural network analysis of brain development in young preterm neonates. Neuroimage, 101, 667–680. doi:10.1016/j.neuroimage.2014.07.030 CrossRef  Google Scholar  PubMed 
  24. Brown, I.S., & Felton, R.H. (1999). Effects of instruction on beginning reading skills in children at risk for reading disability. Reading and Writing: An Interdisciplinary Journal, 2, 223–241. CrossRef  Google Scholar 
  25. Bruhl, A.B., Delsignore, A., Komossa, K., & Weidt, S. (2014). Neuroimaging in social anxiety disorder-a meta-analytic review resulting in a new neurofunctional model. Neuroscience and Biobehavioral Reviews, 47, 260–280. doi:10.1016/j.neubiorev.2014.08.003 CrossRef  Google Scholar 
  26. Buckholtz, J.W., & Meyer-Lindenberg, A. (2012). Psychopathology and the human connectome: Toward a transdiagnostic model of risk for mental illness. Neuron, 74(6), 990–1004. doi:10.1016/j.neuron.2012.06.002 CrossRef  Google Scholar 
  27. Burmeister, M., McInnis, M.G., & Zollner, S. (2008). Psychiatric genetics: Progress amid controversy. Nature Reviews. Genetics, 9(7), 527–540. doi:10.1038/nrg2381 CrossRef  Google Scholar  PubMed 
  28. Buss, C., Davis, E.P., Shahbaba, B., Pruessner, J.C., Head, K., & Sandman, C.A. (2012). Maternal cortisol over the course of pregnancy and subsequent child amygdala and hippocampus volumes and affective problems. Proceedings of the National Academy of Sciences of the United States of America, 109(20), E1312–E1319. doi:10.1073/pnas.1201295109 CrossRef  Google Scholar  PubMed 
  29. Buss, C., Entringer, S., Swanson, J.M., & Wadhwa, P.D. (2012). The role of stress in brain development: The gestational environment’s long-term effects on the brain. Cerebrum, 2012, 4. Google Scholar 
  30. Carballedo, A., Scheuerecker, J., Meisenzahl, E., Schoepf, V., Bokde, A., Moller, H.J., & Frodl, T. (2011). Functional connectivity of emotional processing in depression. Journal of Affective Disorders, 134(1–3), 272–279. doi:10.1016/j.jad.2011.06.021 CrossRef  Google Scholar  PubMed 
  31. Carmody, D.P., Bendersky, M., Dunn, S.M., DeMarco, J.K., Hegyi, T., Hiatt, M., & Lewis, M. (2006). Early risk, attention, and brain activation in adolescents born preterm. Child Development, 77(2), 384–394. doi:10.1111/j.1467-8624.2006.00877.x CrossRef  Google Scholar  PubMed 
  32. Caspi, A., & Moffitt, T.E. (2006). Gene-environment interactions in psychiatry: Joining forces with neuroscience. Nature Reviews Neuroscience, 7(7), 583–590. doi:10.1038/nrn1925 CrossRef  Google Scholar  PubMed 
  33. Castellanos, F.X., Di Martino, A., Craddock, R.C., Mehta, A.D., & Milham, M.P. (2013). Clinical applications of the functional connectome. Neuroimage, 80, 527–540. doi:10.1016/j.neuroimage.2013.04.083 CrossRef  Google Scholar  PubMed 
  34. Colvert, E., Tick, B., McEwen, F., Stewart, C., Curran, S.R., Woodhouse, E., & Bolton, P. (2015). Heritability of Autism Spectrum Disorder in a UK Population-Based Twin Sample. The Journal of the American Medical Association, Psychiatry, 72(5), 415–423. doi:10.1001/jamapsychiatry.2014.3028 Google Scholar 
  35. Constable, R.T., Ment, L.R., Vohr, B.R., Kesler, S.R., Fulbright, R.K., Lacadie, C., & Reiss, A.R. (2008). Prematurely born children demonstrate white matter microstructural differences at 12 years of age, relative to term control subjects: An investigation of group and gender effects. Pediatrics, 121(2), 306–316. doi:10.1542/peds.2007-0414 CrossRef  Google Scholar  PubMed 
  36. Costa e Silva, J.A. (2013). Personalized medicine in psychiatry: New technologies and approaches. Metabolism, 62(Suppl. 1), S40–S44. doi:10.1016/j.metabol.2012.08.017 CrossRef  Google Scholar 
  37. Counsell, S.J., Edwards, A.D., Chew, A.T., Anjari, M., Dyet, L.E., Srinivasan, L., & Cowan, F.M. (2008). Specific relations between neurodevelopmental abilities and white matter microstructure in children born preterm. Brain, 131(Pt 12), 3201–3208. doi:10.1093/brain/awn268 CrossRef  Google Scholar  PubMed 
  38. Cross-Disorder Group of the Psychiatric Genomics, C., Lee, S.H., Ripke, S., Neale, B.M., Faraone, S.V., Purcell, S.M., … Wray, N.R. (2013). Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nature Genetics, 45(9), 984–994. doi:10.1038/ng.2711 CrossRef  Google Scholar  PubMed 
  39. Damaraju, E., Phillips, J.R., Lowe, J.R., Ohls, R., Calhoun, V.D., & Caprihan, A. (2010). Resting-state functional connectivity differences in premature children. Frontiers in Systems Neuroscience, 4, pii:23. doi:10.3389/fnsys.2010.00023 Google Scholar  PubMed 
  40. Davis, E.P., & Sandman, C.A. (2010). The timing of prenatal exposure to maternal cortisol and psychosocial stress is associated with human infant cognitive development. Child Development, 81(1), 131–148. doi:10.1111/j.1467-8624.2009.01385.x CrossRef  Google Scholar  PubMed 
  41. Dawson, G., Ashman, S.B., & Carver, L.J. (2000). The role of early experience in shaping behavioral and brain development and its implications for social policy. Development and Psychopathology, 12(4), 695–712. CrossRef  Google Scholar 
  42. Degnan, A.J., Wisnowski, J.L., Choi, S., Ceschin, R., Bhushan, C., Leahy, R.M., & Panigrahy, A. (2015). Altered structural and functional connectivity in late preterm preadolescence: An anatomic seed-based study of resting state networks related to the posteromedial and lateral parietal cortex. PLoS One, 10(6), e0130686. doi:10.1371/journal.pone.0130686 CrossRef  Google Scholar 
  43. Deoni, S.C., Dean, D.C. III, Remer, J., Dirks, H., & O’Muircheartaigh, J. (2015). Cortical maturation and myelination in healthy toddlers and young children. Neuroimage, 115, 147–161. doi:10.1016/j.neuroimage.2015.04.058 CrossRef  Google Scholar  PubMed 
  44. Di Martino, A., Fair, D.A., Kelly, C., Satterthwaite, T.D., Castellanos, F.X., Thomason, M.E., & Milham, M.P. (2014). Unraveling the miswired connectome: A developmental perspective. Neuron, 83(6), 1335–1353. doi:10.1016/j.neuron.2014.08.050 CrossRef  Google Scholar  PubMed 
  45. Di Martino, A., Yan, C.G., Li, Q., Denio, E., Castellanos, F.X., Alaerts, K., & Milham, M.P. (2014). The autism brain imaging data exchange: Towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular Psychiatry, 19(6), 659–667. doi:10.1038/mp.2013.78 CrossRef  Google Scholar  PubMed 
  46. Drevets, W.C., Savitz, J., & Trimble, M. (2008). The subgenual anterior cingulate cortex in mood disorders. CNS Spectrums, 13(8), 663–681. CrossRef  Google Scholar  PubMed 
  47. Dubois, J., Dehaene-Lambertz, G., Kulikova, S., Poupon, C., Huppi, P.S., & Hertz-Pannier, L. (2014). The early development of brain white matter: A review of imaging studies in fetuses, newborns and infants. Neuroscience, 276, 48–71. doi:10.1016/j.neuroscience.2013.12.044 CrossRef  Google Scholar 
  48. Duerden, E.G., Card, D., Lax, I.D., Donner, E.J., & Taylor, M.J. (2013). Alterations in frontostriatal pathways in children born very preterm. Developmental Medicine and Child Neurology, 55(10), 952–958. doi:10.1111/dmcn.12198 CrossRef  Google Scholar  PubMed 
  49. Eckert, M.A., Leonard, C.M., Richards, T.L., Aylward, E.H., Thomson, J., & Berninger, V.W. (2003). Anatomical correlates of dyslexia: Frontal and cerebellar findings. Brain, 126(Pt 2), 482–494. CrossRef  Google Scholar  PubMed 
  50. Eden, G.F., Jones, K.M., Cappell, K., Gareau, L., Wood, F.B., Zeffiro, T.A., & Flowers, D.L. (2004). Neural changes following remediation in adult developmental dyslexia. Neuron, 44(3), 411–422. doi:10.1016/j.neuron.2004.10.019 CrossRef  Google Scholar  PubMed 
  51. Elison, J.T., Paterson, S.J., Wolff, J.J., Reznick, J.S., Sasson, N.J., Gu, H., & Network, I. (2013). White matter microstructure and atypical visual orienting in 7-month-olds at risk for autism. The American Journal of Psychiatry, 170(8), 899–908. doi:10.1176/appi.ajp.2012.12091150 CrossRef  Google Scholar  PubMed 
  52. Eriksen, H.L., Kesmodel, U.S., Pedersen, L.H., & Mortensen, E.L. (2015). No association between prenatal exposure to psychotropics and intelligence at age five. Acta Obstetricia et Gynecologica Scandinavica, 94(5), 501–507. doi:10.1111/aogs.12611 CrossRef  Google Scholar  PubMed 
  53. Etkin, A., & Wager, T.D. (2007). Functional neuroimaging of anxiety: A meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. The American Journal of Psychiatry, 164(10), 1476–1488. doi:10.1176/appi.ajp.2007.07030504 CrossRef  Google Scholar  PubMed 
  54. Fair, D.A., Posner, J., Nagel, B.J., Bathula, D., Dias, T.G., Mills, K.L., & Nigg, J.T. (2010). Atypical default network connectivity in youth with attention-deficit/hyperactivity disorder. Biological Psychiatry, 68(12), 1084–1091. doi:10.1016/j.biopsych.2010.07.003 CrossRef  Google Scholar  PubMed 
  55. Feldman, H.M., Lee, E.S., Yeatman, J.D., & Yeom, K.W. (2012). Language and reading skills in school-aged children and adolescents born preterm are associated with white matter properties on diffusion tensor imaging. Neuropsychologia, 50(14), 3348–3362. doi:10.1016/j.neuropsychologia.2012.10.014 CrossRef  Google Scholar  PubMed 
  56. Ferrazzi, G., Kuklisova Murgasova, M., Arichi, T., Malamateniou, C., Fox, M.J., Makropoulos, A., & Hajnal, J.V. (2014). Resting State fMRI in the moving fetus: A robust framework for motion, bias field and spin history correction. Neuroimage, 101, 555–568. doi:10.1016/j.neuroimage.2014.06.074 CrossRef  Google Scholar  PubMed 
  57. Finke, K., Neitzel, J., Bauml, J.G., Redel, P., Muller, H.J., Meng, C., & Sorg, C. (2015). Visual attention in preterm born adults: Specifically impaired attentional sub-mechanisms that link with altered intrinsic brain networks in a compensation-like mode. Neuroimage, 107, 95–106. doi:10.1016/j.neuroimage.2014.11.062 CrossRef  Google Scholar 
  58. Finn, E.S., Shen, X., Scheinost, D., Rosenberg, M.D., Huang, J., Chun, M.M., & Constable, R.T. (2015). Functional connectome fingerprinting: Identifying individuals using patterns of brain connectivity. Nature Neuroscience, 18, 1664–1671. doi:10.1038/nn.4135 CrossRef  Google Scholar  PubMed 
  59. Foland-Ross, L.C., Gilbert, B.L., Joormann, J., & Gotlib, I.H. (2015). Neural markers of familial risk for depression: An investigation of cortical thickness abnormalities in healthy adolescent daughters of mothers with recurrent depression. Journal of Abnormal Psychology, 124(3), 476–485. doi:10.1037/abn0000050 CrossRef  Google Scholar  PubMed 
  60. Foland-Ross, L.C., Hardin, M.G., & Gotlib, I.H. (2013). Neurobiological markers of familial risk for depression. Current Topics in Behavioral Neurosciences, 14, 181–206. 10.1007/7854_2012_213 CrossRef  Google Scholar  PubMed 
  61. Foland-Ross, L.C., Sacchet, M.D., Prasad, G., Gilbert, B., Thompson, P.M., & Gotlib, I.H. (2015). Cortical thickness predicts the first onset of major depression in adolescence. International Journal of Developmental Neuroscience, 46, 125–131. doi:10.1016/j.ijdevneu.2015.07.007 CrossRef  Google Scholar 
  62. Frye, R.E., Malmberg, B., Desouza, L., Swank, P., Smith, K., & Landry, S. (2009). Increased prefrontal activation in adolescents born prematurely at high risk during a reading task. Brain Research, 1303, 111–119. doi:10.1016/j.brainres.2009.09.091 CrossRef  Google Scholar  PubMed 
  63. Fukunaga, M., Horovitz, S.G., van Gelderen, P., de Zwart, J.A., Jansma, J.M., Ikonomidou, V.N., & Duyn, J.H. (2006). Large-amplitude, spatially correlated fluctuations in BOLD fMRI signals during extended rest and early sleep stages. Magnetic Resonance Imaging, 24(8), 979–992. doi:10.1016/j.mri.2006.04.018 CrossRef  Google Scholar  PubMed 
  64. Gao, W., Alcauter, S., Elton, A., Hernandez-Castillo, C.R., Smith, J.K., Ramirez, J., & Lin, W. (2015). Functional network development during the first year: Relative sequence and socioeconomic correlations. Cerebral Cortex, 25(9), 2919–2928. doi:10.1093/cercor/bhu088 CrossRef  Google Scholar  PubMed 
  65. Gaugler, T., Klei, L., Sanders, S.J., Bodea, C.A., Goldberg, A.P., Lee, A.B., & Buxbaum, J.D. (2014). Most genetic risk for autism resides with common variation. Nature Genetics, 46(8), 881–885. doi:10.1038/ng.3039 CrossRef  Google Scholar  PubMed 
  66. Georgiades, S., Szatmari, P., Boyle, M., Hanna, S., Duku, E., & Zwaigenbaum, L., … Pathways in ASD Study Team. (2013). Investigating phenotypic heterogeneity in children with autism spectrum disorder: A factor mixture modeling approach. Journal of Child Psychology and Psychiatry, 54(2), 206–215. doi:10.1111/j.1469-7610.2012.02588.x CrossRef  Google Scholar  PubMed 
  67. Germano, E., Gagliano, A., & Curatolo, P. (2010). Comorbidity of ADHD and dyslexia. Developmental Neuropsychology, 35(5), 475–493. doi:10.1080/87565641.2010.494748 CrossRef  Google Scholar 
  68. Geschwind, D.H. (2009). Advances in autism. Annual Review of Medicine, 60, 367–380. doi:10.1146/annurev.med.60.053107.121225 CrossRef  Google Scholar  PubMed 
  69. Geschwind, N. (1965a). Disconnexion syndromes in animals and man. I. Brain, 88(2), 237–294. CrossRef  Google Scholar  PubMed 
  70. Geschwind, N. (1965b). Disconnexion syndromes in animals and man. II. Brain, 88(3), 585–644. CrossRef  Google Scholar  PubMed 
  71. Glass, H.C., Costarino, A.T., Stayer, S.A., Brett, C.M., Cladis, F., & Davis, P.J. (2015). Outcomes for extremely premature infants. Anesthesia and Analgesia, 120(6), 1337–1351. doi:10.1213/ANE.0000000000000705 CrossRef  Google Scholar  PubMed 
  72. Glover, V. (2014). Maternal depression, anxiety and stress during pregnancy and child outcome; what needs to be done. Best Practice and Research: Clinical Obstetrics and Gynaecology, 28(1), 25–35. doi:10.1016/j.bpobgyn.2013.08.017 CrossRef  Google Scholar 
  73. Gooch, D., Hulme, C., Nash, H.M., & Snowling, M.J. (2014). Comorbidities in preschool children at family risk of dyslexia. Journal of Child Psychology and Psychiatry, 55(3), 237–246. doi:10.1111/jcpp.12139 CrossRef  Google Scholar  PubMed 
  74. Hastings, R.S., Parsey, R.V., Oquendo, M.A., Arango, V., & Mann, J.J. (2004). Volumetric analysis of the prefrontal cortex, amygdala, and hippocampus in major depression. Neuropsychopharmacology, 29(5), 952–959. doi:10.1038/sj.npp.1300371 CrossRef  Google Scholar  PubMed 
  75. Hay, D.F., Pawlby, S., Waters, C.S., Perra, O., & Sharp, D. (2010). Mothers’ antenatal depression and their children’s antisocial outcomes. Child Development, 81(1), 149–165. doi:10.1111/j.1467-8624.2009.01386.x CrossRef  Google Scholar  PubMed 
  76. Hill, R.M., Pettit, J.W., Lewinsohn, P.M., Seeley, J.R., & Klein, D.N. (2014). Escalation to major depressive disorder among adolescents with subthreshold depressive symptoms: Evidence of distinct subgroups at risk. Journal of Affective Disorders, 158, 133–138. doi:10.1016/j.jad.2014.02.011 CrossRef  Google Scholar  PubMed 
  77. Ho, T.C., Yang, G., Wu, J., Cassey, P., Brown, S.D., Hoang, N., & Yang, T.T. (2014). Functional connectivity of negative emotional processing in adolescent depression. Journal of Affective Disorders, 155, 65–74. doi:10.1016/j.jad.2013.10.025 CrossRef  Google Scholar  PubMed 
  78. Hoeft, F., McCandliss, B.D., Black, J.M., Gantman, A., Zakerani, N., Hulme, C., & Gabrieli, J.D. (2011). Neural systems predicting long-term outcome in dyslexia. Proceedings of the National Academy of Sciences of the United States of America, 108(1), 361–366. doi:10.1073/pnas.1008950108 CrossRef  Google Scholar  PubMed 
  79. Holmes, A.J., Hollinshead, M.O., O’Keefe, T.M., Petrov, V.I., Fariello, G.R., Wald, L.L., & Buckner, R.L. (2015). Brain Genomics Superstruct Project initial data release with structural, functional, and behavioral measures. Scientific Data, 2, 150031. doi:10.1038/sdata.2015.31 CrossRef  Google Scholar 
  80. Howlin, P., Goode, S., Hutton, J., & Rutter, M. (2004). Adult outcome for children with autism. Journal of Child Psychology and Psychiatry, 45(2), 212–229. CrossRef  Google Scholar  PubMed 
  81. Huizink, A.C., de Medina, P.G., Mulder, E.J., Visser, G.H., & Buitelaar, J.K. (2002). Psychological measures of prenatal stress as predictors of infant temperament. Journal of the American Academy of Child and Adolescent Psychiatry, 41(9), 1078–1085. CrossRef  Google Scholar  PubMed 
  82. Jakab, A., Kasprian, G., Schwartz, E., Gruber, G.M., Mitter, C., Prayer, D., & Langs, G. (2015). Disrupted developmental organization of the structural connectome in fetuses with corpus callosum agenesis. Neuroimage, 111, 277–288. doi:10.1016/j.neuroimage.2015.02.038 CrossRef  Google Scholar  PubMed 
  83. Jakab, A., Schwartz, E., Kasprian, G., Gruber, G.M., Prayer, D., Schopf, V., & Langs, G. (2014). Fetal functional imaging portrays heterogeneous development of emerging human brain networks. Frontiers in Human Neuroscience, 8, 852. doi:10.3389/fnhum.2014.00852 CrossRef  Google Scholar 
  84. Jernigan, T.L., Brown, T.T., Hagler, D.J. Jr., Akshoomoff, N., Bartsch, H., & Newman, E., … Pediatric Imaging Neurocognition and Genetics Study. (2015). The Pediatric Imaging, Neurocognition, and Genetics (PING) data repository. Neuroimage, 124, 1149–1154. doi:10.1016/j.neuroimage.2015.04.057 CrossRef  Google Scholar  PubMed 
  85. Jeste, S.S., & Geschwind, D.H. (2014). Disentangling the heterogeneity of autism spectrum disorder through genetic findings. Nature Reviews. Neurology, 10(2), 74–81. doi:10.1038/nrneurol.2013.278 CrossRef  Google Scholar  PubMed 
  86. Johnson, S., & Marlow, N. (2011). Preterm birth and childhood psychiatric disorders. Pediatric Research, 69(5, Part 2 of 2), 11R–18R. CrossRef  Google Scholar  PubMed 
  87. Jovicich, J., Marizzoni, M., Bosch, B., Bartres-Faz, D., Arnold, J., & Benninghoff, J., … PharmaCog, Consortium. (2014). Multisite longitudinal reliability of tract-based spatial statistics in diffusion tensor imaging of healthy elderly subjects. Neuroimage, 101, 390–403. doi:10.1016/j.neuroimage.2014.06.075 CrossRef  Google Scholar  PubMed 
  88. Kaiser, M. (2013). The potential of the human connectome as a biomarker of brain disease. Frontier in Human Neuroscience, 7, 484. doi: 10.3389/fnhum.2013.00484 Google Scholar  PubMed 
  89. Kaiser, R.H., Andrews-Hanna, J.R., Wager, T.D., & Pizzagalli, D.A. (2015). Large-scale network dysfunction in major depressive disorder: A Meta-analysis of resting-state functional connectivity. Journal of the American Medical Association Psychiatry, 72(6), 603–611. doi:10.1001/jamapsychiatry.2015.0071 Google Scholar  PubMed 
  90. Kapur, S., Phillips, A.G., & Insel, T.R. (2012). Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it? Molecular Psychiatry, 17(12), 1174–1179. doi:10.1038/mp.2012.105 CrossRef  Google Scholar 
  91. Kasprian, G., Langs, G., Brugger, P.C., Bittner, M., Weber, M., Arantes, M., & Prayer, D. (2011). The prenatal origin of hemispheric asymmetry: An in utero neuroimaging study. Cerebral Cortex, 21(5), 1076–1083. doi:10.1093/cercor/bhq179 CrossRef  Google Scholar 
  92. Kelly, C., Biswal, B.B., Craddock, R.C., Castellanos, F.X., & Milham, M.P. (2012). Characterizing variation in the functional connectome: Promise and pitfalls. Trends in Cognitive Science, 16(3), 181–188. doi:10.1016/j.tics.2012.02.001 CrossRef  Google Scholar  PubMed 
  93. Kersbergen, K.J., Leemans, A., Groenendaal, F., van der Aa, N.E., Viergever, M.A., de Vries, L.S., & Benders, M.J. (2014). Microstructural brain development between 30 and 40 weeks corrected age in a longitudinal cohort of extremely preterm infants. Neuroimage, 103, 214–224. doi:10.1016/j.neuroimage.2014.09.039 CrossRef  Google Scholar 
  94. Kessler, R.C., Avenevoli, S., & Merikangas, K.R. (2001). Mood disorders in children and adolescents: An epidemiologic perspective. Biological Psychiatry, 49(12), 1002–1014. CrossRef  Google Scholar 
  95. Kingston, D., Tough, S., & Whitfield, H. (2012). Prenatal and postpartum maternal psychological distress and infant development: A systematic review. Child Psychiatry and Human Development, 43(5), 683–714. doi:10.1007/s10578-012-0291-4 CrossRef  Google Scholar  PubMed 
  96. Koyama, M.S., Di Martino, A., Kelly, C., Jutagir, D.R., Sunshine, J., Schwartz, S.J., & Milham, M.P. (2013). Cortical signatures of dyslexia and remediation: An intrinsic functional connectivity approach. PLoS One, 8(2), e55454. 10.1371/journal.pone.0055454 CrossRef  Google Scholar  PubMed 
  97. Krogsrud, S.K., Fjell, A.M., Tamnes, C.K., Grydeland, H., Mork, L., Due-Tonnessen, P., & Walhovd, K.B. (2015). Changes in white matter microstructure in the developing brain-A longitudinal diffusion tensor imaging study of children from 4 to 11years of age. Neuroimage, 124(Pt A), 473–486. doi:10.1016/j.neuroimage.2015.09.017 CrossRef  Google Scholar  PubMed 
  98. Kuhn, T., Gullett, J.M., Nguyen, P., Boutzoukas, A.E., Ford, A., Colon-Perez, L.M., & Bauer, R.M. (2015). Test-retest reliability of high angular resolution diffusion imaging acquisition within medial temporal lobe connections assessed via tract based spatial statistics, probabilistic tractography and a novel graph theory metric. Brain Imaging and Behavior. doi:10.1007/s11682-015-9425-1 Google Scholar 
  99. Kwon, S.H., Vasung, L., Ment, L.R., & Huppi, P.S. (2014). The role of neuroimaging in predicting neurodevelopmental outcomes of preterm neonates. Clinics in Perinatology, 41(1), 257–283. doi:10.1016/j.clp.2013.10.003 CrossRef  Google Scholar  PubMed 
  100. Limperopoulos, C., & Clouchoux, C. (2009). Advancing fetal brain MRI: Targets for the future. Seminars in Perinatology, 33(4), 289–298. doi:10.1053/j.semperi.2009.04.002 CrossRef  Google Scholar  PubMed 
  101. Liston, C., Chen, A.C., Zebley, B.D., Drysdale, A.T., Gordon, R., & Leuchter, B., Dubin, M.J. (2014). Default mode network mechanisms of transcranial magnetic stimulation in depression. Biological Psychiatry, 76(7), 517–526. doi:10.1016/j.biopsych.2014.01.023 CrossRef  Google Scholar  PubMed 
  102. Liu, J., Glenn, O.A., & Xu, D. (2014). Fast, free-breathing, in vivo fetal imaging using time-resolved 3D MRI technique: Preliminary results. Quantitative Imaging Medicine and Surgery, 4(2), 123–128. doi:10.3978/j.issn.2223-4292.2014.04.08 Google Scholar 
  103. Loeffler, M., Engel, C., Ahnert, P., Alfermann, D., Arelin, K., Baber, R., & Thiery, J. (2015). The LIFE-Adult-Study: Objectives and design of a population-based cohort study with 10,000 deeply phenotyped adults in Germany. BioMed Central Public Health, 15, 691. doi:10.1186/s12889-015-1983-z CrossRef  Google Scholar  PubMed 
  104. Lombardo, M.V., Pierce, K., Eyler, L.T., Barnes, C.C., Ahrens-Barbeau, C., Solso, S., & Courchesne, E. (2015). Different functional neural substrates for good and poor language outcome in autism. Neuron, 86(2), 567–577. CrossRef  Google Scholar  PubMed 
  105. Lubsen, J., Vohr, B., Myers, E., Hampson, M., Lacadie, C., Schneider, K.C., & Ment, L.R. (2011). Microstructural and functional connectivity in the developing preterm brain. Seminars in Perinatology, 35(1), 34–43. doi:10.1053/j.semperi.2010.10.006 CrossRef  Google Scholar 
  106. Martin, J., O’Donovan, M.C., Thapar, A., Langley, K., & Williams, N. (2015). The relative contribution of common and rare genetic variants to ADHD. Translational Psychiatry, 5, e506. doi:10.1038/tp.2015.5 CrossRef  Google Scholar 
  107. Matson, J.L., & Williams, L.W. (2013). Differential diagnosis and comorbidity: Distinguishing autism from other mental health issues. Neuropsychiatry, 3(2), 233–243. doi:10.2217/npy.13.1 CrossRef  Google Scholar 
  108. McArthur, G., Kohnen, S., Larsen, L., Jones, K., Anandakumar, T., Banales, E., & Castles, A. (2013). Getting to grips with the heterogeneity of developmental dyslexia. Cognitive Neuropsychology, 30(1), 1–24. doi:10.1080/02643294.2013.784192 CrossRef  Google Scholar  PubMed 
  109. McGrath, C.L., Kelley, M.E., Dunlop, B.W., Holtzheimer, P.E. III, Craighead, W.E., & Mayberg, H.S. (2014). Pretreatment brain states identify likely nonresponse to standard treatments for depression. Biological Psychiatry, 76(7), 527–535. doi:10.1016/j.biopsych.2013.12.005 CrossRef  Google Scholar 
  110. Mennes, M., Biswal, B.B., Castellanos, F.X., & Milham, M.P. (2013). Making data sharing work: The FCP/INDI experience. Neuroimage, 82, 683–691. doi:10.1016/j.neuroimage.2012.10.064 CrossRef  Google Scholar  PubMed 
  111. Ment, L.R., Hirtz, D., & Huppi, P.S. (2009). Imaging biomarkers of outcome in the developing preterm brain. Lancet Neurology, 8(11), 1042–1055. doi:10.1016/S1474-4422(09)70257-1 CrossRef  Google Scholar 
  112. Ment, L.R., Kesler, S., Vohr, B., Katz, K.H., Baumgartner, H., Schneider, K.C., & Reiss, A.L. (2009). Longitudinal brain volume changes in preterm and term control subjects during late childhood and adolescence. Journal of Pediatrics, 123(2), 503–511. doi:10.1542/peds.2008-0025 CrossRef  Google Scholar  PubMed 
  113. Milham, M.P., Nugent, A.C., Drevets, W.C., Dickstein, D.P., Leibenluft, E., Ernst, M., & Pine, D.S. (2005). Selective reduction in amygdala volume in pediatric anxiety disorders: A voxel-based morphometry investigation. Biological Psychiatry, 57(9), 961–966. doi:10.1016/j.biopsych.2005.01.038 CrossRef  Google Scholar 
  114. Miller, C.H., Hamilton, J.P., Sacchet, M.D., & Gotlib, I.H. (2015). Meta-analysis of functional neuroimaging of major depressive disorder in youth. Journal of the American Medical Association Psychiatry, 72(10), 1045–1053. doi:10.1001/jamapsychiatry.2015.1376 Google Scholar  PubMed 
  115. Monk, C., Spicer, J., & Champagne, F.A. (2012). Linking prenatal maternal adversity to developmental outcomes in infants: The role of epigenetic pathways. Development and Psychopathology, 24(4), 1361–1376. doi:10.1017/S0954579412000764 CrossRef  Google Scholar  PubMed 
  116. Mueller, S., Wang, D., Fox, M.D., Pan, R., Lu, J., Li, K., & Liu, H. (2015). Reliability correction for functional connectivity: Theory and implementation. Human Brain Mapping, 36(11), 4664–4680. doi:10.1002/hbm.22947 CrossRef  Google Scholar  PubMed 
  117. Muhle, R., Trentacoste, S.V., & Rapin, I. (2004). The genetics of autism. Journal of Pediatrics, 113(5), e472–e486. CrossRef  Google Scholar  PubMed 
  118. Mullen, K.M., Vohr, B.R., Katz, K.H., Schneider, K.C., Lacadie, C., Hampson, M., & Ment, L.R. (2011). Preterm birth results in alterations in neural connectivity at age 16 years. Neuroimage, 54(4), 2563–2570. doi:10.1016/j.neuroimage.2010.11.019 CrossRef  Google Scholar  PubMed 
  119. Myers, E.H., Hampson, M., Vohr, B., Lacadie, C., Frost, S.J., Pugh, K.R., & Ment, L.R. (2010). Functional connectivity to a right hemisphere language center in prematurely born adolescents. Neuroimage, 51(4), 1445–1452. doi:10.1016/j.neuroimage.2010.03.049 CrossRef  Google Scholar  PubMed 
  120. NessAiver, A., NessAiver, M., Harms, M., & Xu, J. (2015). FBIRN-X: An updated fBIRN quality assurance protocol for slice accelerated fMRI. Retrieved from https://ww4.aievolution.com/hbm1501/files/content/abstracts/44138/1686_NessAiver.pdfGoogle Scholar 
  121. Nooner, K.B., Colcombe, S.J., Tobe, R.H., Mennes, M., Benedict, M.M., Moreno, A.L., & Milham, M.P. (2012). The NKI-Rockland Sample: A model for accelerating the pace of discovery science in psychiatry. Frontiers in Neuroscience, 6, 152. doi:10.3389/fnins.2012.00152 CrossRef  Google Scholar 
  122. O’Connor, T.G., Monk, C., & Fitelson, E.M. (2014). Practitioner review: Maternal mood in pregnancy and child development--implications for child psychology and psychiatry. Journal of Child Psychology and Psychiatry, 55(2), 99–111. doi:10.1111/jcpp.12153 CrossRef  Google Scholar  PubMed 
  123. Odegard, T.N., Ring, J., Smith, S., Biggan, J., & Black, J. (2008). Differentiating the neural response to intervention in children with developmental dyslexia. Annals of Dyslexia, 58(1), 1–14. doi:10.1007/s11881-008-0014-5 CrossRef  Google Scholar  PubMed 
  124. Odsbu, I., Skurtveit, S., Selmer, R., Roth, C., Hernandez-Diaz, S., & Handal, M. (2015). Prenatal exposure to anxiolytics and hypnotics and language competence at 3 years of age. European Journal Clinical Pharmacology, 71(3), 283–291. doi:10.1007/s00228-014-1797-4 CrossRef  Google Scholar  PubMed 
  125. Ornoy, A., & Koren, G. (2014). Selective serotonin reuptake inhibitors in human pregnancy: On the way to resolving the controversy. Seminars in Fetal and Neonatal Medicine, 19(3), 188–194. doi:10.1016/j.siny.2013.11.007 CrossRef  Google Scholar 
  126. Ozonoff, S., Young, G.S., Carter, A., Messinger, D., Yirmiya, N., Zwaigenbaum, L., & Stone, W.L. (2011). Recurrence risk for autism spectrum disorders: A Baby Siblings Research Consortium study. Journal of Pediatrics, 128(3), e488–e495. doi:10.1542/peds.2010-2825 Google Scholar  PubMed 
  127. Perez-Edgar, K., & Fox, N.A. (2005). Temperament and anxiety disorders. Child and Adolescent Psychiatric Clinics of North America, 14(4), 681–706, viii. doi:10.1016/j.chc.2005.05.008 CrossRef  Google Scholar  PubMed 
  128. Petzoldt, J., Wittchen, H.U., Wittich, J., Einsle, F., Hofler, M., & Martini, J. (2014). Maternal anxiety disorders predict excessive infant crying: A prospective longitudinal study. Archives of Disease in Childhood, 99(9), 800–806. doi:10.1136/archdischild-2013-305562 CrossRef  Google Scholar  PubMed 
  129. Pezawas, L., Meyer-Lindenberg, A., Drabant, E.M., Verchinski, B.A., Munoz, K.E., Kolachana, B.S., & Weinberger, D.R. (2005). 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: A genetic susceptibility mechanism for depression. Nature Neuroscience, 8(6), 828–834. doi:10.1038/nn1463 CrossRef  Google Scholar 
  130. Pickles, A., Anderson, D.K., & Lord, C. (2014). Heterogeneity and plasticity in the development of language: A 17-year follow-up of children referred early for possible autism. Journal of Child Psychology and Psychiatry, 55(12), 1354–1362. doi:10.1111/jcpp.12269 CrossRef  Google Scholar  PubMed 
  131. Pine, D.S., Cohen, E., Cohen, P., & Brook, J. (1999). Adolescent depressive symptoms as predictors of adult depression: Moodiness or mood disorder? American Journal of Psychiatry, 156(1), 133–135. CrossRef  Google Scholar  PubMed 
  132. Pine, D.S., Cohen, P., Gurley, D., Brook, J., & Ma, Y. (1998). The risk for early-adulthood anxiety and depressive disorders in adolescents with anxiety and depressive disorders. Archives of General Psychiatry, 55(1), 56–64. CrossRef  Google Scholar  PubMed 
  133. Power, J.D., Barnes, K.A., Snyder, A.Z., Schlaggar, B.L., & Petersen, S.E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage, 59(3), 2142–2154. doi:10.1016/j.neuroimage.2011.10.018 CrossRef  Google Scholar  PubMed 
  134. Price, J.L., & Drevets, W.C. (2012). Neural circuits underlying the pathophysiology of mood disorders. Trends in Cognitive Sciences, 16(1), 61–71. doi:10.1016/j.tics.2011.12.011 CrossRef  Google Scholar  PubMed 
  135. Qin, S., Young, C.B., Duan, X., Chen, T., Supekar, K., & Menon, V. (2014). Amygdala subregional structure and intrinsic functional connectivity predicts individual differences in anxiety during early childhood. Biological Psychiatry, 75(11), 892–900. doi:10.1016/j.biopsych.2013.10.006 CrossRef  Google Scholar  PubMed 
  136. Qiu, A., Rifkin-Graboi, A., Chen, H., Chong, Y.S., Kwek, K., Gluckman, P.D., & Meaney, M.J. (2013). Maternal anxiety and infants’ hippocampal development: Timing matters. Translational Psychiatry, 3, e306. doi:10.1038/tp.2013.79 CrossRef  Google Scholar  PubMed 
  137. Radua, J., Via, E., Catani, M., & Mataix-Cols, D. (2011). Voxel-based meta-analysis of regional white-matter volume differences in autism spectrum disorder versus healthy controls. Psychological Medicine, 41(7), 1539–1550. doi:10.1017/S0033291710002187 CrossRef  Google Scholar  PubMed 
  138. Rafii, M.S., Wishnek, H., Brewer, J.B., Donohue, M.C., Ness, S., Mobley, W.C., & Rissman, R.A. (2015). The down syndrome biomarker initiative (DSBI) pilot: Proof of concept for deep phenotyping of Alzheimer’s disease biomarkers in down syndrome. Frontiers in Behavioral Neuroscience, 9, 239. doi:10.3389/fnbeh.2015.00239 CrossRef  Google Scholar  PubMed 
  139. Ramenghi, L.A., Rutherford, M., Fumagalli, M., Bassi, L., Messner, H., Counsell, S., & Mosca, F. (2009). Neonatal neuroimaging: Going beyond the pictures. Early Human Development, 85(10 Suppl.), S75–S77. doi:10.1016/j.earlhumdev.2009.08.022 CrossRef  Google Scholar 
  140. Ramus, F., Rosen, S., Dakin, S.C., Day, B.L., Castellote, J.M., White, S., & Frith, U. (2003). Theories of developmental dyslexia: Insights from a multiple case study of dyslexic adults. Brain, 126(Pt 4), 841–865. CrossRef  Google Scholar  PubMed 
  141. Raschle, N.M., Chang, M., & Gaab, N. (2011). Structural brain alterations associated with dyslexia predate reading onset. Neuroimage, 57(3), 742–749. doi:10.1016/j.neuroimage.2010.09.055 CrossRef  Google Scholar  PubMed 
  142. Raschle, N.M., Stering, P.L., Meissner, S.N., & Gaab, N. (2014). Altered neuronal response during rapid auditory processing and its relation to phonological processing in prereading children at familial risk for dyslexia. Cerebral Cortex, 24(9), 2489–2501. doi:10.1093/cercor/bht104 CrossRef  Google Scholar  PubMed 
  143. Ray, R.D., & Zald, D.H. (2012). Anatomical insights into the interaction of emotion and cognition in the prefrontal cortex. Neuroscience and Biobehavioral Reviews, 36(1), 479–501. doi:10.1016/j.neubiorev.2011.08.005 CrossRef  Google Scholar 
  144. Reddy, U.M., Abuhamad, A.Z., Levine, D., Saade, G.R., & Fetal Imaging Workshop Invited Paraticipants. (2014). Fetal imaging: Executive summary of a Joint Eunice Kennedy Shriver National Institute of Child Health and Human Development, Society for Maternal-Fetal Medicine, American Institute of Ultrasound in Medicine, American College of Obstetricians and Gynecologists, American College of Radiology, Society for Pediatric Radiology, and Society of Radiologists in Ultrasound Fetal Imaging Workshop. American Journal of Obstetrics and Gynecology, 210(5), 387–397. doi:10.1016/j.ajog.2014.02.028 CrossRef  Google Scholar 
  145. Richlan, F., Kronbichler, M., & Wimmer, H. (2011). Meta-analyzing brain dysfunctions in dyslexic children and adults. Neuroimage, 56(3), 1735–1742. doi:10.1016/j.neuroimage.2011.02.040 CrossRef  Google Scholar  PubMed 
  146. Richlan, F., Kronbichler, M., & Wimmer, H. (2013). Structural abnormalities in the dyslexic brain: A meta-analysis of voxel-based morphometry studies. Human Brain Mapping, 34(11), 3055–3065. doi:10.1002/hbm.22127 CrossRef  Google Scholar  PubMed 
  147. Rifkin-Graboi, A., Bai, J., Chen, H., Hameed, W.B., Sim, L.W., Tint, M.T., & Qiu, A. (2013). Prenatal maternal depression associates with microstructure of right amygdala in neonates at birth. Biological Psychiatry, 74(11), 837–844. doi:10.1016/j.biopsych.2013.06.019 CrossRef  Google Scholar  PubMed 
  148. Robinson, O.J., Krimsky, M., Lieberman, L., Allen, P., Vytal, K., & Grillon, C. (2014). Towards a mechanistic understanding of pathological anxiety: The dorsal medial prefrontal-amygdala ‘aversive amplification’ circuit in unmedicated generalized and social anxiety disorders. Lancet Psychiatry, 1(4), 294–302. doi:10.1016/S2215-0366(14)70305-0 CrossRef  Google Scholar 
  149. Rose, J., Butler, E.E., Lamont, L.E., Barnes, P.D., Atlas, S.W., & Stevenson, D.K. (2009). Neonatal brain structure on MRI and diffusion tensor imaging, sex, and neurodevelopment in very-low-birthweight preterm children. Developmental Medicine and Child Neurology, 51(7), 526–535. doi:10.1111/j.1469-8749.2008.03231.x CrossRef  Google Scholar 
  150. Roy, A.K., Fudge, J.L., Kelly, C., Perry, J.S., Daniele, T., Carlisi, C., & Ernst, M. (2013). Intrinsic functional connectivity of amygdala-based networks in adolescent generalized anxiety disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 52(3), 290–299 e292. doi:10.1016/j.jaac.2012.12.010 CrossRef  Google Scholar  PubMed 
  151. Roy, A.K., Shehzad, Z., Margulies, D.S., Kelly, A.M., Uddin, L.Q., Gotimer, K., & Milham, M.P. (2009). Functional connectivity of the human amygdala using resting state fMRI. Neuroimage, 45(2), 614–626. doi:10.1016/j.neuroimage.2008.11.030 CrossRef  Google Scholar  PubMed 
  152. Sadeghi, N., Prastawa, M., Fletcher, P.T., Wolff, J., Gilmore, J.H., & Gerig, G. (2013). Regional characterization of longitudinal DT-MRI to study white matter maturation of the early developing brain. Neuroimage, 68, 236–247. doi:10.1016/j.neuroimage.2012.11.040 CrossRef  Google Scholar 
  153. Saleem, S.N. (2014). Fetal MRI: An approach to practice: A review. Journal of Advanced Research, 5(5), 507–523. doi:10.1016/j.jare.2013.06.001 CrossRef  Google Scholar 
  154. Sandin, S., Lichtenstein, P., Kuja-Halkola, R., Larsson, H., Hultman, C.M., & Reichenberg, A. (2014). The familial risk of autism. Journal of the American Medical Association, 311(17), 1770–1777. doi:10.1001/jama.2014.4144 CrossRef  Google Scholar  PubMed 
  155. Sandman, C.A., Buss, C., Head, K., & Davis, E.P. (2015). Fetal exposure to maternal depressive symptoms is associated with cortical thickness in late childhood. Biological Psychiatry, 77(4), 324–334. doi:10.1016/j.biopsych.2014.06.025 CrossRef  Google Scholar  PubMed 
  156. Satterthwaite, T.D., Elliott, M.A., Gerraty, R.T., Ruparel, K., Loughead, J., Calkins, M.E., & Wolf, D.H. (2013). An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. Neuroimage, 64, 240–256. doi:10.1016/j.neuroimage.2012.08.052 CrossRef  Google Scholar  PubMed 
  157. Saygin, Z.M., Norton, E.S., Osher, D.E., Beach, S.D., Cyr, A.B., Ozernov-Palchik, O., & Gabrieli, J.D. (2013). Tracking the roots of reading ability: White matter volume and integrity correlate with phonological awareness in prereading and early-reading kindergarten children. Journal of Neuroscience, 33(33), 13251–13258. doi:10.1523/JNEUROSCI.4383-12.2013 CrossRef  Google Scholar  PubMed 
  158. Schmaal, L., Veltman, D.J., van Erp, T.G., Samann, P.G., Frodl, T., Jahanshad, N., & Hibar, D.P. (2015). Subcortical brain alterations in major depressive disorder: Findings from the ENIGMA Major Depressive Disorder working group. Molecular Psychiatry. doi:10.1038/mp.2015.69 Google Scholar  PubMed 
  159. Schopf, V., Kasprian, G., Brugger, P.C., & Prayer, D. (2012). Watching the fetal brain at ‘rest’. International Journal of Developmental Neuroscience, 30(1), 11–17. doi:10.1016/j.ijdevneu.2011.10.006 CrossRef  Google Scholar 
  160. Schumann, G., Binder, E.B., Holte, A., de Kloet, E.R., Oedegaard, K.J., Robbins, T.W., & Wittchen, H.U. (2014). Stratified medicine for mental disorders. European Neuropsychopharmacology, 24(1), 5–50. doi:10.1016/j.euroneuro.2013.09.010 CrossRef  Google Scholar  PubMed 
  161. Seshamani, S., Cheng, X., Fogtmann, M., Thomason, M.E., & Studholme, C. (2014). A method for handling intensity inhomogenieties in fMRI sequences of moving anatomy of the early developing brain. Medical Image Analysis, 18(2), 285–300. doi:10.1016/j.media.2013.10.011 CrossRef  Google Scholar  PubMed 
  162. Shaywitz, B.A., Shaywitz, S.E., Blachman, B.A., Pugh, K.R., Fulbright, R.K., Skudlarski, P., & Gore, J.C. (2004). Development of left occipitotemporal systems for skilled reading in children after a phonologically-based intervention. Biological Psychiatry, 55(9), 926–933. doi:10.1016/j.biopsych.2003.12.019 CrossRef  Google Scholar  PubMed 
  163. Shen, M.D., Nordahl, C.W., Young, G.S., Wootton-Gorges, S.L., Lee, A., Liston, S.E., & Amaral, D.G. (2013). Early brain enlargement and elevated extra-axial fluid in infants who develop autism spectrum disorder. Brain, 136(Pt 9), 2825–2835. doi:10.1093/brain/awt166 CrossRef  Google Scholar  PubMed 
  164. Silberg, J., Rutter, M., Neale, M., & Eaves, L. (2001). Genetic moderation of environmental risk for depression and anxiety in adolescent girls. The British Journal of Psychiatry, 179(2), 116–121. CrossRef  Google Scholar  PubMed 
  165. Silk, J.S., Davis, S., McMakin, D.L., Dahl, R.E., & Forbes, E.E. (2012). Why do anxious children become depressed teenagers? The role of social evaluative threat and reward processing. Psychological Medicine, 42(10), 2095–2107. CrossRef  Google Scholar  PubMed 
  166. Simos, P.G., Fletcher, J.M., Sarkari, S., Billingsley-Marshall, R., Denton, C.A., & Papanicolaou, A.C. (2007). Intensive instruction affects brain magnetic activity associated with oral word reading in children with persistent reading disabilities. Journal of Learning Disabilities, 40(1), 37–48. CrossRef  Google Scholar  PubMed 
  167. Smith, L.K., Draper, E.S., & Field, D. (2014). Long-term outcome for the tiniest or most immature babies: Survival rates. Seminars in Fetal and Neonatal Medicine, 19(2), 72–77. doi:10.1016/j.siny.2013.11.002 CrossRef  Google Scholar  PubMed 
  168. Smyser, C.D., Inder, T.E., Shimony, J.S., Hill, J.E., Degnan, A.J., Snyder, A.Z., & Neil, J.J. (2010). Longitudinal analysis of neural network development in preterm infants. Cerebral Cortex, 20(12), 2852–2862. doi:10.1093/cercor/bhq035 CrossRef  Google Scholar  PubMed 
  169. Smyser, C.D., Snyder, A.Z., & Neil, J.J. (2011). Functional connectivity MRI in infants: Exploration of the functional organization of the developing brain. Neuroimage, 56(3), 1437–1452. doi:10.1016/j.neuroimage.2011.02.073 CrossRef  Google Scholar  PubMed 
  170. Stepniak, B., Papiol, S., Hammer, C., Ramin, A., Everts, S., Hennig, L., & Ehrenreich, H. (2014). Accumulated environmental risk determining age at schizophrenia onset: A deep phenotyping-based study. Lancet Psychiatry, 1(6), 444–453. doi:10.1016/S2215-0366(14)70379-7 CrossRef  Google Scholar  PubMed 
  171. Szatmari, P., Merette, C., Bryson, S.E., Thivierge, J., Roy, M.A., Cayer, M., & Maziade, M. (2002). Quantifying dimensions in autism: A factor-analytic study. Journal of the American Academy of Child and Adolescent Psychiatry, 41(4), 467–474. doi:10.1097/00004583-200204000-00020 CrossRef  Google Scholar  PubMed 
  172. Tau, G.Z., & Peterson, B.S. (2010). Normal development of brain circuits. Neuropsychopharmacology, 35(1), 147–168. doi:10.1038/npp.2009.115 CrossRef  Google Scholar 
  173. Temple, E., Deutsch, G.K., Poldrack, R.A., Miller, S.L., Tallal, P., Merzenich, M.M., &Gabrieli, J.D. (2003). Neural deficits in children with dyslexia ameliorated by behavioral remediation: Evidence from functional MRI. Proceedings of the National Academy of Sciences of the United States of America, 100(5), 2860–2865. doi:10.1073/pnas.0030098100 CrossRef  Google Scholar 
  174. Thomason, M.E., Brown, J.A., Dassanayake, M.T., Shastri, R., Marusak, H.A., Hernandez-Andrade, E., & Romero, R. (2014). Intrinsic functional brain architecture derived from graph theoretical analysis in the human fetus. PLoS One, 9(5), e94423. doi:10.1371/journal.pone.0094423 CrossRef  Google Scholar 
  175. Thomason, M.E., Dassanayake, M.T., Shen, S., Katkuri, Y., Alexis, M., Anderson, A.L., & Romero, R. (2013). Cross-hemispheric functional connectivity in the human fetal brain. Science Translational Medicine, 5(173), 173ra124. doi:10.1126/scitranslmed.3004978 CrossRef  Google Scholar 
  176. Thomason, M.E., Grove, L.E., Lozon, T.A. Jr., Vila, A.M., Ye, Y., Nye, M.J., & Romero, R. (2015). Age-related increases in long-range connectivity in fetal functional neural connectivity networks in utero. Developmental Cognitive Neuroscience, 11, 96–104. doi:10.1016/j.dcn.2014.09.001 CrossRef  Google Scholar 
  177. Thompson, P.A., Hulme, C., Nash, H.M., Gooch, D., Hayiou-Thomas, E., & Snowling, M.J. (2015). Developmental dyslexia: Predicting individual risk. Journal of Child Psychology and Psychiatry, 56(9), 976–987. doi:10.1111/jcpp.12412 CrossRef  Google Scholar 
  178. Torgesen, J.K. (2000). Individual differences in response to early interventions in reading: The lingering problem of treatment resisters. Learning Disabilities Research & Practice, 15(1), 55–64. CrossRef  Google Scholar 
  179. Torgesen, J.K., Wagner, R.K., Rashotte, C.A., Rose, E., Lindamood, P., Conway, T., & Garvan, C. (1999). Preventing reading failure in young children with phonological processing disabilities: Group and individual responses to instruction. Journal of Educational Psychology, 91, 1–15. CrossRef  Google Scholar 
  180. Treyvaud, K., Ure, A., Doyle, L.W., Lee, K.J., Rogers, C.E., Kidokoro, H., & Anderson, P.J. (2013). Psychiatric outcomes at age seven for very preterm children: Rates and predictors. Journal of Child Psychology and Psychiatry, 54(7), 772–779. doi:10.1111/jcpp.12040 CrossRef  Google Scholar  PubMed 
  181. Uehara, T., Yamasaki, T., Okamoto, T., Koike, T., Kan, S., Miyauchi, S., & Tobimatsu, S. (2014). Efficiency of a “small-world” brain network depends on consciousness level: A resting-state FMRI study. Cerebral Cortex, 24(6), 1529–1539. doi:10.1093/cercor/bht004 CrossRef  Google Scholar  PubMed 
  182. Van den Bergh, B.R., & Marcoen, A. (2004). High antenatal maternal anxiety is related to ADHD symptoms, externalizing problems, and anxiety in 8- and 9-year-olds. Child Development, 75(4), 1085–1097. doi:10.1111/j.1467-8624.2004.00727.x CrossRef  Google Scholar 
  183. Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., Ugurbil, K., & WU-Minn HPC Consortium (2013). The WU-Minn HPC Consortium. Neuroimage, 80, 62–79. doi:10.1016/j.neuroimage.2013.05.041 CrossRef  Google Scholar 
  184. Vellutino, F.R., Scanlon, D.M., Sipay, E.R., Small, S.G., Pratt, A., Chen, R., & Dencla, M.B. (1996). Cognitive profiles of difficult-to-remediate and readily remediated poor readers: Early interventions as a vehicle for distinguishing between cognitive and experiential deficits as basic causes of specific reading disability. Journal of Educational Psychology, 88, 601–638. CrossRef  Google Scholar 
  185. Walker, L., Chang, L.C., Nayak, A., Irfanoglu, M.O., Botteron, K.N., McCracken, J., … Brain Development Cooperative Group. (2016). The diffusion tensor imaging (DTI) component of the NIH MRI study of normal brain development (PedsDTI). Neuroimage, 124, 1125–1130. doi:10.1016/j.neuroimage.2015.05.083 CrossRef  Google Scholar 
  186. Wang, X.H., Li, L., Xu, T., & Ding, Z. (2015). Investigating the temporal patterns within and between intrinsic connectivity networks under eyes-open and eyes-closed resting states: A dynamical functional connectivity study based on phase synchronization. PLoS One, 10(10), e0140300. doi:10.1371/journal.pone.0140300 CrossRef  Google Scholar  PubMed 
  187. Wang, Z., Fernandez-Seara, M., Alsop, D.C., Liu, W.C., Flax, J.F., Benasich, A.A., & Detre, J.A. (2008). Assessment of functional development in normal infant brain using arterial spin labeled perfusion MRI. Neuroimage, 39(3), 973–978. doi:10.1016/j.neuroimage.2007.09.045 CrossRef  Google Scholar  PubMed 
  188. Watanabe, T., Kessler, D., Scott, C., Angstadt, M., & Sripada, C. (2014). Disease prediction based on functional connectomes using a scalable and spatially-informed support vector machine. Neuroimage, 96, 183–202. doi:10.1016/j.neuroimage.2014.03.067 CrossRef  Google Scholar  PubMed 
  189. Weissman, M.M., Fendrich, M., Warner, V., & Wickramaratne, P. (1992). Incidence of psychiatric disorder in offspring at high and low risk for depression. Journal of the American Academy of Child & Adolescent Psychiatry, 31(4), 640–648. CrossRef  Google Scholar  PubMed 
  190. Weissman, M.M., Wickramaratne, P., Nomura, Y., Warner, V., Verdeli, H., Pilowsky, D.J., & Bruder, G. (2005). Families at high and low risk for depression: A 3-generation study. Archives of General Psychiatry, 62(1), 29–36. CrossRef  Google Scholar  PubMed 
  191. Weissman, M.M., Wolk, S., Wickramaratne, P., Goldstein, R.B., Adams, P., Greenwald, S., & Steinberg, D. (1999). Children with prepubertal-onset major depressive disorder and anxiety grown up. Archives of General Psychiatry, 56(9), 794–801. CrossRef  Google Scholar  PubMed 
  192. Welsh, R.C., Nemec, U., & Thomason, M.E. (2011). Fetal magnetic resonance imaging at 3.0 T. Topics in Magnetic Resonance Imaging, 22(3), 119–131. doi:10.1097/RMR.0b013e318267f932 CrossRef  Google Scholar  PubMed 
  193. Werner, E.A., Myers, M.M., Fifer, W.P., Cheng, B., Fang, Y., Allen, R., & Monk, C. (2007). Prenatal predictors of infant temperament. Developmental Psychobiology, 49(5), 474–484. doi:10.1002/dev.20232 CrossRef  Google Scholar  PubMed 
  194. White, T., Nelson, M., & Lim, K.O. (2008). Diffusion tensor imaging in psychiatric disorders. Topics in Magnetic Resonance Imaging, 19(2), 97–109. doi:10.1097/RMR.0b013e3181809f1e CrossRef  Google Scholar 
  195. Whitfield-Gabrieli, S., Thermenos, H.W., Milanovic, S., Tsuang, M.T., Faraone, S.V., McCarley, R.W., & Seidman, L.J. (2009). Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 106(4), 1279–1284. doi:10.1073/pnas.0809141106 CrossRef  Google Scholar  PubMed 
  196. Wiggins, L.D., Robins, D.L., Adamson, L.B., Bakeman, R., & Henrich, C.C. (2012). Support for a dimensional view of autism spectrum disorders in toddlers. Journal of Autism and Developmental Disorders, 42(2), 191–200. doi:10.1007/s10803-011-1230-0 CrossRef  Google Scholar 
  197. Willcutt, E.G., Betjemann, R.S., McGrath, L.M., Chhabildas, N.A., Olson, R.K., DeFries, J.C., & Pennington, B.F. (2010). Etiology and neuropsychology of comorbidity between RD and ADHD: The case for multiple-deficit models. Cortex, 46(10), 1345–1361. doi:10.1016/j.cortex.2010.06.009 CrossRef  Google Scholar  PubMed 
  198. Willcutt, E.G., Petrill, S.A., Wu, S., Boada, R., Defries, J.C., Olson, R.K., & Pennington, B.F. (2013). Comorbidity between reading disability and math disability: Concurrent psychopathology, functional impairment, and neuropsychological functioning. Journal of Learning Disabilities, 46(6), 500–516. doi:10.1177/0022219413477476 CrossRef  Google Scholar 
  199. Wolff, J.J., Botteron, K.N., Dager, S.R., Elison, J.T., Estes, A.M., Gu, H., & Network, I. (2014). Longitudinal patterns of repetitive behavior in toddlers with autism. Journal of Child Psychology and Psychiatry, 55(8), 945–953. doi:10.1111/jcpp.12207 CrossRef  Google Scholar  PubMed 
  200. Wolff, J.J., Gerig, G., Lewis, J.D., Soda, T., Styner, M.A., Vachet, C., IBIS Network. (2015). Altered corpus callosum morphology associated with autism over the first 2 years of life. Brain, 138(Pt 7), 2046–2058. doi:10.1093/brain/awv118 CrossRef  Google Scholar  PubMed 
  201. Wolff, J.J., Gu, H., Gerig, G., Elison, J.T., Styner, M., Gouttard, S., … IBIS Network. (2012). Differences in white matter fiber tract development present from 6 to 24 months in infants with autism. American Journal of Psychiatry, 169(6), 589–600. doi:10.1176/appi.ajp.2011.11091447 CrossRef  Google Scholar  PubMed 
  202. Woodward, L.J., & Fergusson, D.M. (2001). Life course outcomes of young people with anxiety disorders in adolescence. Journal of the American Academy of Child and Adolescent Psychiatry, 40(9), 1086–1093. doi:10.1097/00004583-200109000-00018 CrossRef  Google Scholar 
  203. Yan, C.G., Cheung, B., Kelly, C., Colcombe, S., Craddock, R.C., Di Martino, A., & Milham, M.P. (2013). A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. Neuroimage, 76(0), 183–201. doi:http://dx.doi.org/10.1016/j.neuroimage.2013.03.004 CrossRef  Google Scholar 
  204. Yan, C.G., Craddock, R.C., He, Y., & Milham, M.P. (2013). Addressing head motion dependencies for small-world topologies in functional connectomics. Frontiers in Human Neuroscience, 7, 910. doi:10.3389/fnhum.2013.00910 CrossRef  Google Scholar  PubMed 
  205. Yan, C.G., Craddock, R.C., Zuo, X.-N., Zang, Y.-F., & Milham, M.P. (2013). Standardizing the intrinsic brain: Towards robust measurement of inter-individual variation in 1000 functional connectomes. Neuroimage, 80(0), 246–262. doi:http://dx.doi.org/10.1016/j.neuroimage.2013.04.081 CrossRef  Google Scholar  PubMed 
  206. Young, J.M., Powell, T.L., Morgan, B.R., Card, D., Lee, W., Smith, M.L., & Taylor, M.J. (2015). Deep grey matter growth predicts neurodevelopmental outcomes in very preterm children. Neuroimage, 111, 360–368. doi:10.1016/j.neuroimage.2015.02.030 CrossRef  Google Scholar  PubMed 
  207. Zuo, X.N., Anderson, J.S., Bellec, P., Birn, R.M., Biswal, B.B., Blautzik, J., & Milham, M.P. (2014). An open science resource for establishing reliability and reproducibility in functional connectomics. Scientific Data, 1, 140049. doi:10.1038/sdata.2014.49 CrossRef  Google Scholar  PubMed 
Variation in White Matter Connectivity Predicts the Ability to Remember Faces and Discriminate Their Emotions
Author(s)
  • Ashley Unger | Temple University, Department of Psychology, Philadelphia, Pennsylvania
  • Kylie H. Alm | Temple University, Department of Psychology, Philadelphia, Pennsylvania
  • Jessica A. Collins | Massachusetts General Hospital, Department of Neurology, Boston, Massachusetts
  • Jacquelyn M. O’Leary | Temple University, Department of Psychology, Philadelphia, Pennsylvania
  • Ingrid R. Olson | Temple University, Department of Psychology, Philadelphia, Pennsylvania

Correspondence
E-mail address | iolson@temple.edu

Disclosures
The authors declare no competing or conflicting financial interests.

Abstract
Objectives:

The extended face network contains clusters of neurons that perform distinct functions on facial stimuli. Regions in the posterior ventral visual stream appear to perform basic perceptual functions on faces, while more anterior regions, such as the ventral anterior temporal lobe and amygdala, function to link mnemonic and affective information to faces. Anterior and posterior regions are interconnected by a long-range white matter tracts; however, it is not known if variation in connectivity of these pathways explains cognitive performance.

Methods:

Here, we used diffusion imaging and deterministic tractography in a cohort of 28 neurologically normal adults ages 18–28 to examine microstructural properties of visual fiber pathways and their relationship to certain mnemonic and affective functions involved in face processing. We investigated how inter-individual variability in two tracts, the inferior longitudinal fasciculus (ILF) and the inferior fronto-occipital fasciculus (IFOF), related to performance on tests of facial emotion recognition and face memory.

Results:

Results revealed that microstructure of both tracts predicted variability in behavioral performance indexed by both tasks, suggesting that the ILF and IFOF play a role in facilitating our ability to discriminate emotional expressions in faces, as well as to remember unique faces. Variation in a control tract, theuncinate fasciculus, did not predict performance on these tasks.

Conclusions:

These results corroborate and extend the findings of previous neuropsychology studies investigating the effects of damage to the ILF and IFOF, and demonstrate that differences in face processing abilities are related to white matter microstructure, even in healthy individuals. (JINS, 2016,22, 180–190)

Bibliography
  1. Alexander, A.L., Hurley, S.A., Samsonov, A.A., Adluru, N., Hosseinbor, A.P., Mossahebi, P., & Field, A.S. (2011). Characterization of cerebral white matter properties using quantitative magnetic resonance imaging stains. Brain Connectivity, 1(6), 423–446. http://doi.org/10.1089/brain.2011.0071 CrossRef  Google Scholar  PubMed 
  2. Alexander, A.L., Lee, J.E., Lazar, M., & Field, A.S. (2007b). Diffusion tensor imaging of the brain. Neurotherapeutics, 4(3), 316–329. http://doi.org/10.1016/j.nurt.2007.05.011 CrossRef  Google Scholar 
  3. Alm, K.H., Rolheiser, T., Mohamed, F.B., & Olson, I.R. (2015). Fronto-temporal white matter connectivity predicts reversal learning errors. Frontiers in Neuroscience, 9(343), 1–11. doi:10.3389/fnhum.2015.00343 Google Scholar 
  4. Almairac, F., Herbet, G., Moritz-Gasser, S., de Champfleur, N.M., & Duffau, H. (2014). The left inferior fronto-occipital fasciculus subserves language semantics: A multilevel lesion study. Brain Structure & Function. http://doi.org/10.1007/s00429-014-0773-1 Google Scholar 
  5. Baggio, H.C., Segura, B., Ibarretxe-Bilbao, N., Valldeoriola, F., Marti, M.J., Compta, Y., & Junqué, C. (2012). Structural correlates of facial emotion recognition deficits in Parkinson’s disease patients. Neuropsychologia, 50(8), 2121–2128. http://doi.org/10.1016/j.neuropsychologia.2012.05.020 CrossRef  Google Scholar  PubMed 
  6. Bauer, R.M. (1982). Visual hypoemotionality as a symptom of visual-limbic disconnection in man. Archives of Neurology, 39(11), 702–708. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7126000 CrossRef  Google Scholar  PubMed 
  7. Braem, B., Honoré, J., Rousseaux, M., Saj, A., & Coello, Y. (2014). Integration of visual and haptic informations in the perception of the vertical in young and old healthy adults and right brain-damaged patients. Neurophysiologie Clinique, 44(1), 41–48. http://doi.org/10.1016/j.neucli.2013.10.137 CrossRef  Google Scholar 
  8. Catani, M. (2007). From hodology to function. Brain, 130(Pt 3), 602–605. http://doi.org/10.1093/brain/awm008 CrossRef  Google Scholar 
  9. Catani, M., Jones, D.K., Donato, R., & Ffytche, D.H. (2003). Occipito-temporal connections in the human brain. Brain, 126(Pt 9), 2093–2107. http://doi.org/10.1093/brain/awg203 CrossRef  Google Scholar 
  10. Catani, M., & Thiebaut de Schotten, M. (2008). A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex, 44(8), 1105–1132. http://doi.org/10.1016/j.cortex.2008.05.004 CrossRef  Google Scholar  PubMed 
  11. Coello, A.F., Duvaux, S., De Benedictis, A., Matsuda, R., & Duffau, H. (2013). Involvement of the right inferior longitudinal fascicle in visual hemiagnosia: A brain stimulation mapping study. Journal of Neurosurgery, 118(1), 202–205. http://doi.org/10.3171/2012.10.JNS12527 CrossRef  Google Scholar 
  12. Coello, Y., Bartolo, A., Amiri, B., Devanne, H., Houdayer, E., & Derambure, P. (2008). Perceiving what is reachable depends on motor representations: Evidence from a transcranial magnetic stimulation study. PLoS One, 3(8), e2862. http://doi.org/10.1371/journal.pone.0002862 CrossRef  Google Scholar  PubMed 
  13. De Zubicaray, G.I., Rose, S.E., & McMahon, K.L. (2011). The structure and connectivity of semantic memory in the healthy older adult brain. Neuroimage, 54(2), 1488–1494. http://doi.org/10.1016/j.neuroimage.2010.08.058 CrossRef  Google Scholar 
  14. Diehl, B., Busch, R.M., Duncan, J.S., Piao, Z., Tkach, J., & Lüders, H.O. (2008). Abnormalities in diffusion tensor imaging of the uncinate fasciculus relate to reduced memory in temporal lobe epilepsy. Epilepsia, 49(8), 1409–1418. http://doi.org/10.1111/j.1528-1167.2008.01596.x CrossRef  Google Scholar 
  15. Duchaine, B., & Nakayama, K. (2006). The Cambridge Face Memory Test: Results for neurologically intact individuals and an investigation of its validity using inverted face stimuli and prosopagnosic participants. Neuropsychologia, 44(4), 576–585. http://doi.org/10.1016/j.neuropsychologia.2005.07.001 CrossRef  Google Scholar  PubMed 
  16. Duffau, H., Gatignol, P., Mandonnet, E., Peruzzi, P., Tzourio-Mazoyer, N., & Capelle, L. (2005). New insights into the anatomo-functional connectivity of the semantic system: A study using cortico-subcortical electrostimulations. Brain, 128(Pt 4), 797–810. http://doi.org/10.1093/brain/awh423 CrossRef  Google Scholar  PubMed 
  17. Duffau, H., Peggy Gatignol, S.T., Mandonnet, E., Capelle, L., & Taillandier, L. (2008). Intraoperative subcortical stimulation mapping of language pathways in a consecutive series of 115 patients with Grade II glioma in the left dominant hemisphere. Journal of Neurosurgery, 109(3), 461–471. http://doi.org/10.3171/JNS/2008/109/9/0461 CrossRef  Google Scholar 
  18. Ekman, P., & Friesen, W.V. (1976). Measuring facial movement. Environmental Psychology and Nonverbal Behavior, 1(1), 56–75. http://doi.org/10.1007/BF01115465 CrossRef  Google Scholar 
  19. Epelbaum, S., Pinel, P., Gaillard, R., Delmaire, C., Perrin, M., Dupont, S., & Cohen, L. (2008). Pure alexia as a disconnection syndrome: New diffusion imaging evidence for an old concept. Cortex, 44(8), 962–974. http://doi.org/10.1016/j.cortex.2008.05.003 CrossRef  Google Scholar 
  20. Genova, H.M., Rajagopalan, V., Chiaravalloti, N., Binder, A., Deluca, J., & Lengenfelder, J. (2015). Facial affect recognition linked to damage in specific white matter tracts in traumatic brain injury. Social Neuroscience, 10(1), 27–34. doi:10.1080/17470919.2014.959618. CrossRef  Google Scholar  PubMed 
  21. Gil-Robles, S., Carvallo, A., Jimenez, M.D.M., Gomez Caicoya, A., Martinez, R., Ruiz-Ocaña, C., & Duffau, H. (2013). Double dissociation between visual recognition and picture naming: A study of the visual language connectivity using tractography and brain stimulation. Neurosurgery, 72(4), 678–686. http://doi.org/10.1227/NEU.0b013e318282a361 CrossRef  Google Scholar 
  22. Gong, G., He, Y., & Evans, A.C. (2011). Brain connectivity: Gender makes a difference. The Neuroscientist, 17(5), 575–591. http://doi.org/10.1177/1073858410386492 CrossRef  Google Scholar 
  23. Grossi, D., Soricelli, A., Ponari, M., Salvatore, E., Quarantelli, M., Prinster, A., & Trojano, L. (2014). Structural connectivity in a single case of progressive prosopagnosia: The role of the right inferior longitudinal fasciculus. Cortex, 56, 111–120. http://doi.org/10.1016/j.cortex.2012.09.010 CrossRef  Google Scholar 
  24. Habib, M. (1986). Visual hypoemotionality and prosopagnosia associated with right temporal lobe isolation. Neuropsychologia, 24(4), 577–582. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/3774141 CrossRef  Google Scholar 
  25. Hoeft, F., Meyler, A., Hernandez, A., Juel, C., Taylor-Hill, H., Martindale, J.L., McMillon, G., Kolchugina, G., … Gabrieli, J. D. (2007). Functional and morphometric brain dissociation between dyslexia and reading ability. Behavioral Neuroscience, 121(3), 602–613. CrossRef  Google Scholar 
  26. Horel, J.A., & Misantone, L.J. (1974). The Klüver-Bucy syndrome produced by partial isolation of the temporal lobe. Experimental Neurology, 42(1), 101–112. http://doi.org/10.1016/0014-4886(74)90010-7 CrossRef  Google Scholar  PubMed 
  27. Ingalhalikar, M., Smith, A., Parker, D., Satterthwaite, T.D., Elliott, M.A., Ruparel, K., & Verma, R. (2014). Sex differences in the structural connectome of the human brain. Proceedings of the National Academy of Sciences of the United States of America, 111(2), 823–828. http://doi.org/10.1073/pnas.1316909110 CrossRef  Google Scholar  PubMed 
  28. Johansen-Berg, H., & Behrens, T.E.J. (2009). Diffusion MRI. Amsterdam: Elsevier. http://doi.org/10.1016/B978-0-12-374709-9.00022-5 Google Scholar 
  29. Jones, D.K. (2008). Studying connections in the living human brain with diffusion MRI. Cortex, 44(8), 936–952. http://doi.org/10.1016/j.cortex.2008.05.002 CrossRef  Google Scholar  PubMed 
  30. Lebel, C., Gee, M., Camicioli, R., Wieler, M., Martin, W., & Beaulieu, C. (2012). Diffusion tensor imaging of white matter tract evolution over the lifespan. Neuroimage, 60(1), 340–352. http://doi.org/10.1016/j.neuroimage.2011.11.094 CrossRef  Google Scholar 
  31. Mandonnet, E., Nouet, A., Gatignol, P., Capelle, L., & Duffau, H. (2007). Does the left inferior longitudinal fasciculus play a role in language? A brain stimulation study. Brain, 130(Pt 3), 623–629. http://doi.org/10.1093/brain/awl361 CrossRef  Google Scholar 
  32. McDonald, C.R., Hagler, D.J., Girard, H.M., Pung, C., Ahmadi, M.E., Holland, D., & Dale, A.M. (2010). Changes in fiber tract integrity and visual fields after anterior temporal lobectomy. Neurology, 75(18), 1631–1638. http://doi.org/10.1212/WNL.0b013e3181fb44db CrossRef  Google Scholar 
  33. Metzler-Baddeley, C., Jones, D.K., Belaroussi, B., Aggleton, J.P., & O’Sullivan, M.J. (2011). Frontotemporal connections in episodic memory and aging: A diffusion MRI tractography study. The Journal of Neuroscience, 31(37), 13236–13245. http://doi.org/10.1523/JNEUROSCI.2317-11.2011 CrossRef  Google Scholar  PubMed 
  34. Mori, S., Crain, B.J., Chacko, V.P., & Van Zijl, P.C.M. (1999). Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Annals of Neurology, 45(2), 265–269. http://doi.org/10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-33.0.CO;2-3>CrossRef Google Scholar  PubMed 
  35. Mori, S., Kaufmann, W.E., Davatzikos, C., Stieltjes, B., Amodei, L., Fredericksen, K., & van Zijl, P.C.M. (2002). Imaging cortical association tracts in the human brain using diffusion-tensor-based axonal tracking. Magnetic Resonance in Medicine, 47(2), 215–223. http://doi.org/10.1002/mrm.10074 CrossRef  Google Scholar 
  36. Mundfrom, D.J., Piccone, A., Perrett, J.J., Schaffer, J., & Roozeboom, M. (2006). Bonferroni adjustments in tests for regression coefficients. Multiple Linear Regression Viewpoints, 32, 1–6. Google Scholar 
  37. Niogi, S.N., Mukherjee, P., Ghajar, J., Johnson, C.E., Kolster, R., Lee, H., & McCandliss, B.D. (2008). Structural dissociation of attentional control and memory in adults with and without mild traumatic brain injury. Brain, 131(Pt 12), 3209–3221. http://doi.org/10.1093/brain/awn247 CrossRef  Google Scholar  PubMed 
  38. Olson, I.R., Heide, R.J., Alm, K.H., & Vyas, G. (2015). Development of the uncinate fasciculus: implications for theory and developmental disorders. Developmental Cognitive Neuroscience, 14, 50–61. CrossRef  Google Scholar 
  39. Philippi, C.L., Mehta, S., Grabowski, T., Adolphs, R., & Rudrauf, D. (2009). Damage to association fiber tracts impairs recognition of the facial expression of emotion. The Journal of Neuroscience, 29(48), 15089–15099. http://doi.org/10.1523/JNEUROSCI.0796-09.2009 CrossRef  Google Scholar  PubMed 
  40. Sarubbo, S., De Benedictis, A., Maldonado, I.L., Basso, G., & Duffau, H. (2013). Frontal terminations for the inferior fronto-occipital fascicle: Anatomical dissection, DTI study and functional considerations on a multi-component bundle. Brain Structure & Function, 218(1), 21–37. http://doi.org/10.1007/s00429-011-0372-3 CrossRef  Google Scholar  PubMed 
  41. Schmahmann, J.D., & Pandya, D.N. (2007). The complex history of the fronto-occipital fasciculus. Journal of the History of the Neurosciences, 16, 362–377. CrossRef  Google Scholar 
  42. Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E.J., Johansen-Berg, H., & Matthews, P.M. (2004). Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage, 23(Suppl. 1), S208–S219. http://doi.org/10.1016/j.neuroimage.2004.07.051 CrossRef  Google Scholar 
  43. Sprague, J.M. (1966). Interaction of cortex and superior colliculus in mediation of visually guided behavior in the cat. Science (New York, N.Y.), 153(3743), 1544–1547. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/5917786 CrossRef  Google Scholar 
  44. Tavor, I., Yablonski, M., Mezer, A., Rom, S., Assaf, Y., & Yovel, G. (2014). Separate parts of occipito-temporal white matter fibers are associated with recognition of faces and places. Neuroimage, 86(2014), 123–130. http://doi.org/10.1016/j.neuroimage.2013.07.085 CrossRef  Google Scholar 
  45. Thomas, A.L., Lawler, K., Olson, I.R., & Aguirre, G.K. (2008). The Philadelphia Face Perception Battery. Archives of Clinical Neuropsychology, 23(2), 175–187. http://doi.org/10.1016/j.acn.2007.10.003 CrossRef  Google Scholar  PubMed 
  46. Thomas, C., Avidan, G., Humphreys, K., Jung, K., Gao, F., & Behrmann, M. (2009). Reduced structural connectivity in ventral visual cortex in congenital prosopagnosia. Nature Neuroscience, 12(1), 29–31. http://doi.org/10.1038/nn.2224 CrossRef  Google Scholar  PubMed 
  47. Thomas, C., Humphreys, K., Jung, K.-J., Minshew, N., & Behrmann, M. (2010). The anatomy of the callosal and visual-association pathways in high-functioning autism: A DTI tractography study. Cortex, 47(7), 863–873. http://doi.org/10.1016/j.cortex.2010.07.006 CrossRef  Google Scholar  PubMed 
  48. Thomas, C., Moya, L., Avidan, G., Humphreys, K., Jung, K.J., Peterson, M.A., & Behrmann, M. (2008). Reduction in white matter connectivity, revealed by diffusion tensor imaging, may account for age-related changes in face perception. Journal of Cognitive Neuroscience, 20(2), 268–284. CrossRef  Google Scholar  PubMed 
  49. Tournier, J.-D., Mori, S., & Leemans, A. (2011). Diffusion tensor imaging and beyond. Magnetic Resonance in Medicine, 65(6), 1532–1556. http://doi.org/10.1002/mrm.22924 CrossRef  Google Scholar 
  50. Valdés-Sosa, M., Bobes, M.A., Quiñones, I., Garcia, L., Valdes-Hernandez, P.A., Iturria, Y., & Asencio, J. (2011). Covert face recognition without the fusiform-temporal pathways. Neuroimage, 57(3), 1162–1176. http://doi.org/10.1016/j.neuroimage.2011.04.057 CrossRef  Google Scholar  PubMed 
  51. Von Der Heide, R.J., Skipper, L.M., Klobusicky, E., & Olson, I.R. (2013). Dissecting the uncinate fasciculus: Disorders, controversies and a hypothesis. Brain, 136(Pt 6), 1692–1707. http://doi.org/10.1093/brain/awt094 CrossRef  Google Scholar 
  52. Wakana, S., Caprihan, A., Panzenboeck, M.M., Fallon, J.H., Perry, M., Gollub, R.L., & Mori, S. (2007). Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage, 36(3), 630–644. http://doi.org/10.1016/j.neuroimage.2007.02.049 CrossRef  Google Scholar 
  53. Wang, R., Benner, T., Sorensen, A.G., & Wedeen, V.J. (2007). Diffusion toolkit: A software package for diffusion imaging data processing and tractography. Proceedings of the 15th Scientific Meeting of the International Society for Magnetic Resonance in Medicine, Seattle, Washington. Abstract 3720. Google Scholar 
  54. Yamasaki, T., Taniwaki, T., Tobimatsu, S., Arakawa, K., Kuba, H., Maeda, Y., & Kira, J. (2004). Electrophysiological correlates of associative visual agnosia lesioned in the ventral pathway. Journal of the Neurological Sciences, 221(1-2), 53–60. http://doi.org/10.1016/j.jns.2004.03.024 CrossRef  Google Scholar  PubMed 
  55. Yeatman, J.D., Rauschecker, A.M., & Wandell, B.A. (2013). Anatomy of the visual word form area: Adjacent cortical circuits and long-range white matter connections. Brain and Language, 125(2), 146–155. http://doi.org/10.1016/j.bandl.2012.04.010 CrossRef  Google Scholar  PubMed 
  56. Zemmoura, I., Herbet, G., Moritz-Gasser, S., & Duffau, H. (2015). New insights into the neural network mediating reading processes provided by cortico-subcortical electrical mapping. Human Brain Mapping, 36, 2215–2230. http://doi.org/10.1002/hbm.22766 CrossRef  Google Scholar  PubMed 
Fornix Microstructure and Memory Performance Is Associated with Altered Neural Connectivity during Episodic Recognition
Author(s)
  • Martina Ly | Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veteran’s Hospital, Madison, Wisconsin, Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin, Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin, Madison, Wisconsin
  • Nagesh Adluru | Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin, Madison, Wisconsin
  • Daniel J. Destiche | Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin, Madison, Wisconsin
  • Sharon Y. Lu | Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin, Madison, Wisconsin
  • Jennifer M. Oh | Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veteran’s Hospital, Madison, Wisconsin, Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
  • Siobhan M. Hoscheidt | Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veteran’s Hospital, Madison, Wisconsin, Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
  • Andrew L. Alexander | Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin, Madison, Wisconsin, Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
  • Ozioma C. Okonkwo | Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veteran’s Hospital, Madison, Wisconsin, Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
  • Howard A. Rowley | Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
  • Mark A. Sager | Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veteran’s Hospital, Madison, Wisconsin, Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
  • Sterling C. Johnson | Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veteran’s Hospital, Madison, Wisconsin, Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
  • Barbara B. Bendlin | Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veteran’s Hospital, Madison, Wisconsin, Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin

Correspondence
E-mail address | bbb@medicine.wisc.edu

Disclosures
Ly, Adluru, Destiche, Lu, Oh, Hoscheidt, Okonkwo, Sager, Johnson, and Bendlin report no conflicts of interest. Rowley has provided consultation to and/or received honoraria from GE Healthcare, Bracco, Lundbeck, HL Gore, and Eli Lilly. Alexander is part owner and Chief Operating Officer of inSERT, Inc.

Abstract
Objectives:

The purpose of this study was to assess whether age-related differences in white matter microstructure are associated with altered task-related connectivity during episodic recognition.

Methods:

Using functional magnetic resonance imaging and diffusion tensor imaging from 282 cognitively healthy middle-to-late aged adults enrolled in the Wisconsin Registry for Alzheimer’s Prevention, we investigated whether fractional anisotropy (FA) within white matter regions known to decline with age was associated with task-related connectivity within the recognition network.

Results:

There was a positive relationship between fornix FA and memory performance, both of which negatively correlated with age. Psychophysiological interaction analyses revealed that higher fornix FA was associated with increased task-related connectivity amongst the hippocampus, caudate, precuneus, middle occipital gyrus, and middle frontal gyrus. In addition, better task performance was associated with increased task-related connectivity between the posterior cingulate gyrus, middle frontal gyrus, cuneus, and hippocampus.

Conclusions:

The findings indicate that age has a negative effect on white matter microstructure, which in turn has a negative impact on memory performance. However, fornix microstructure did not significantly mediate the effect of age on performance. Of interest, dynamic functional connectivity was associated with better memory performance. The results of the psychophysiological interaction analysis further revealed that alterations in fornix microstructure explain–at least in part–connectivity among cortical regions in the recognition memory network. Our results may further elucidate the relationship between structural connectivity, neural function, and cognition. (JINS, 2016,22, 191–204)

Bibliography
  1. Adluru, N., Destiche, D.J., Lu, S. Y.-F., Doran, S.T., Birdsill, A.C., Melah, K.E., & Bendlin, B.B. (2014). White matter microstructure in late middle-age: Effects of apolipoprotein E4 and parental family history of Alzheimer’s disease. Neuroimage. Clinical, 4, 730–742. http://doi.org/10.1016/j.nicl.2014.04.008 CrossRef  Google Scholar  PubMed 
  2. Aggleton, J.P., & Brown, M.W. (1999). Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. The Behavioral and Brain Sciences, 22(3), 425–444; discussion 444–489. http://doi.org/10.1017/S0140525X99002034 CrossRef  Google Scholar 
  3. Aggleton, J.P., & Brown, M.W. (2006). Interleaving brain systems for episodic and recognition memory. Trends in Cognitive Sciences. http://doi.org/10.1016/j.tics.2006.08.003 CrossRef  Google Scholar 
  4. Anderson, N.D., Iidaka, T., Cabeza, R., Kapur, S., McIntosh, A.R., & Craik, F.I. (2000). The effects of divided attention on encoding- and retrieval-related brain activity: A PET study of younger and older adults. Journal of Cognitive Neuroscience, 12(5), 775–792. http://doi.org/10.1162/089892900562598 CrossRef  Google Scholar  PubMed 
  5. Antonenko, D., Meinzer, M., Lindenberg, R., Witte, A.V., & Flöel, A. (2012). Grammar learning in older adults is linked to white matter microstructure and functional connectivity. Neuroimage, 62(3), 1667–1674. http://doi.org/10.1016/j.neuroimage.2012.05.074 CrossRef  Google Scholar  PubMed 
  6. Ashburner, J., & Friston, K.J. (1999). Nonlinear spatial normalization using basis functions. Human Brain Mapping, 7(4), 254–266. http://doi.org/10.1002/(SICI)1097-0193(1999)7:4<254::AID-HBM4>3.0.CO;2-G3.0.CO;2-G>CrossRef Google Scholar  PubMed 
  7. Baddeley, A. (1996). Exploring the central executive. The Quarterly Journal of Experimental Psychology, 49A(1), 5–28. CrossRef  Google Scholar 
  8. Beaulieu, C. (2002). The basis of anisotropic water diffusion in the nervous system - A technical review. NMR in Biomedicine, 15(7-8), 435–455. http://doi.org/10.1002/nbm.782 CrossRef  Google Scholar 
  9. Benedict, R. (1997). Brief Visuospatial Memory Test-Revised. Odessa, FL: Psychological Assessment Resources, Inc. Google Scholar 
  10. Braak, H., & Braak, E. (1995). Staging of Alzheimer’s disease-related neurofibrillary changes. In Neurobiology of aging (Vol. 16, pp. 271–278). http://doi.org/10.1016/0197-4580(95)00021-6 Google Scholar 
  11. Cabeza, R. (2004). Task-independent and task-specific age effects on brain activity during working memory, visual attention and episodic retrieval. Cerebral Cortex, 14(4), 364–375. http://doi.org/10.1093/cercor/bhg133 CrossRef  Google Scholar  PubMed 
  12. Cabeza, R., Anderson, N.D., Houle, S., Mangels, J.A., & Nyberg, L. (2000). Age-related differences in neural activity during item and temporal-order memory retrieval: A positron emission tomography study. Journal of Cognitive Neuroscience, 12(1), 197–206. CrossRef  Google Scholar  PubMed 
  13. Cabeza, R., & Dennis, N. (2012). Frontal lobes and aging: Deterioration and compensation. In Principles of frontal lobe function (pp. 628–652). http://doi.org/10.1093/acprof:oso/9780195134971.001.0001 Google Scholar 
  14. Cabeza, R., Grady, C.L., Nyberg, L., McIntosh, A.R., Tulving, E., Kapur, S., & Craik, F.I. (1997). Age-related differences in neural activity during memory encoding and retrieval: A positron emission tomography study. The Journal of Neuroscience, 17(1), 391–400. http://doi.org/0270-6474/96/170391-10$05.00/0 Google Scholar  PubMed 
  15. Cassel, J.C., Duconseille, E., Jeltsch, H., & Will, B. (1997). The fimbria-fornix/cingular bundle pathways: A review of neurochemical and behavioural approaches using lesions and transplantation techniques. Progress in Neurobiology, 51(6), 663–716. http://doi.org/10.1016/S0301-0082(97)00009-9 CrossRef  Google Scholar  PubMed 
  16. Catani, M., Howard, R.J., Pajevic, S., & Jones, D.K. (2002). Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage, 17(1), 77–94. CrossRef  Google Scholar 
  17. Charlton, R.A., Schiavone, F., Barrick, T.R., Morris, R.G., & Markus, H.S. (2010). Diffusion tensor imaging detects age related white matter change over a 2 year follow-up which is associated with working memory decline. Journal of Neurology, Neurosurgery, and Psychiatry, 81(1), 13–19. http://doi.org/10.1136/jnnp.2008.167288 CrossRef  Google Scholar 
  18. Crosby, E.C. (1962). Correlative anatomy of the nervous system. Macmillan. Retrieved from http://books.google.com/books/about/Correlative_anatomy_of_the_nervous_syste.html?id=zrRqAAAAMAAJ&pgis=1 Google Scholar 
  19. Daselaar, S.M., Fleck, M.S., Dobbins, I.G., Madden, D.J., & Cabeza, R. (2006). Effects of healthy aging on hippocampal and rhinal memory functions: An event-related fMRI study. Cerebral Cortex, 16(12), 1771–1782. http://doi.org/10.1093/cercor/bhj112 CrossRef  Google Scholar 
  20. Davis, S.W., Dennis, N.A., Daselaar, S.M., Fleck, M.S., & Cabeza, R. (2008). Qué PASA? the posterior-anterior shift in aging. Cerebral Cortex, 18(5), 1201–1209. http://doi.org/10.1093/cercor/bhm155 CrossRef  Google Scholar 
  21. Davis, S.W., Kragel, J.E., Madden, D.J., & Cabeza, R. (2012). The architecture of cross-hemispheric communication in the aging brain: Linking behavior to functional and structural connectivity. Cerebral Cortex, 22(1), 232–242. http://doi.org/10.1093/cercor/bhr123 CrossRef  Google Scholar 
  22. Du, A.T., Schuff, N., Zhu, X.P., Jagust, W.J., Miller, B.L., Reed, B.R., & Weiner, M.W. (2003). Atrophy rates of entorhinal cortex in AD and normal aging. Neurology, 60(3), 481–486. CrossRef  Google Scholar 
  23. Duverne, S., Motamedinia, S., & Rugg, M.D. (2009). The relationship between aging, performance, and the neural correlates of successful memory encoding. Cerebral Cortex, 19(3), 733–744. http://doi.org/10.1093/cercor/bhn122 CrossRef  Google Scholar 
  24. Faure, A., Haberland, U., Condé, F., & El Massioui, N. (2005). Lesion to the nigrostriatal dopamine system disrupts stimulus-response habit formation. The Journal of Neuroscience, 25(11), 2771–2780. http://doi.org/10.1523/JNEUROSCI.3894-04.2005 CrossRef  Google Scholar  PubMed 
  25. Finsterer, J., & Fuglsang-Frederiksen, A. (2000). Concentric needle EMG versus macro EMG I. Relation in healthy subjects. Clinical Neurophysiology, 111(7), 1211–1215. http://doi.org/10.1016/S1388-2457(00)00310-2 CrossRef  Google Scholar  PubMed 
  26. Folstein, M.F., Folstein, S.E., & McHugh, P.R. (1975). “Mini-mental state.” A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198. http://doi.org/10.1016/0022-3956(75)90026-6 CrossRef  Google Scholar 
  27. Gläscher, J., Rudrauf, D., Colom, R., Paul, L.K., Tranel, D., Damasio, H., & Adolphs, R. (2010). Distributed neural system for general intelligence revealed by lesion mapping. Proceedings of the National Academy of Sciences of the United States of America, 107(10), 4705–4709. http://doi.org/10.1073/pnas.0910397107 CrossRef  Google Scholar 
  28. Grady, C.L. (2008). Cognitive neuroscience of aging. Annals of the New York Academy of Sciences, 1124, 127–144. http://doi.org/10.1196/annals.1440.009 CrossRef  Google Scholar 
  29. Grady, C.L., Grady, C.L., McIntosh, A.R., McIntosh, A.R., Craik, F.I.M., & Craik, F.I.M. (2005). Task-related activity in prefrontal cortex and its relation to recognition memory performance in young and old adults. Neuropsychologia, 43(10), 1466–1481. http://doi.org/10.1016/j.neuropsychologia.2004.12.016 CrossRef  Google Scholar 
  30. Grady, C.L., McIntosh, A.R., & Craik, F.I.M. (2003). Age-related differences in the functional connectivity of the hippocampus during memory encoding. Hippocampus, 13(5), 572–586. http://doi.org/10.1002/hipo.10114 CrossRef  Google Scholar  PubMed 
  31. Greenwood, P.M. (2007). Functional plasticity in cognitive aging: Review and hypothesis. Neuropsychology, 21(6), 657–673. http://doi.org/10.1037/0894-4105.21.6.657 CrossRef  Google Scholar 
  32. Gunning-Dixon, F.M., & Raz, N. (2000). The cognitive correlates of white matter abnormalities in normal aging: A quantitative review. Neuropsychology, 14(2), 224–232. http://doi.org/10.1037//0894-4105.14.2.224 CrossRef  Google Scholar  PubMed 
  33. Harvey, L.O. (1992). The critical operating characteristic and the evaluation of expert judgment. Organizational Behavior and Human Decision Processes. Available from http://doi.org/10.1016/0749-5978(92)90063-D CrossRef  Google Scholar 
  34. Head, D., Kennedy, K.M., Rodrigue, K.M., & Raz, N. (2009). Age differences in perseveration: Cognitive and neuroanatomical mediators of performance on the Wisconsin Card Sorting Test. Neuropsychologia, 47(4), 1200–1203. http://doi.org/10.1016/j.neuropsychologia.2009.01.003 CrossRef  Google Scholar  PubMed 
  35. Hellyer, P.J., Shanahan, M., Scott, G., Wise, R.J.S., Sharp, D.J., & Leech, R. (2014). The control of global brain dynamics: Opposing actions of frontoparietal control and default mode networks on attention. The Journal of Neuroscience, 34(2), 451–461. http://doi.org/10.1523/JNEUROSCI.1853-13.2014 CrossRef  Google Scholar 
  36. Jastak, S., & Wilkinson, G.S. (1984). The Wide Range Achievement test - Revised (Vol. III). Wilmington, DE: Jastak Associates. Google Scholar 
  37. Kaplan, E., Goodglass, H., & Weintraub, S. (1983). Boston Naming Test. Philadelphia: Lea & Febiger. Google Scholar 
  38. Kawas, C., Segal, J., Stewart, W.F., Corrada, M., & Thal, L.J. (1994). A validation study of the Dementia Questionnaire. Archives of Neurology, 51(9), 901–906. http://doi.org/10.1001/archneur.1994.00540210073015 CrossRef  Google Scholar  PubMed 
  39. Kehoe, E.G., Farrell, D., Metzler-Baddeley, C., Lawlor, B.A., Kenny, R.A., Lyons, D., & Bokde, A.L. (2015). Fornix white matter is correlated with resting-state functional connectivity of the thalamus and hippocampus in healthy aging but not in mild cognitive impairment - A preliminary study. Frontiers in Aging Neuroscience, 7, 10. http://doi.org/10.3389/fnagi.2015.00010 CrossRef  Google Scholar 
  40. King, D.R., de Chastelaine, M., Elward, R.L., Wang, T.H., & Rugg, M.D. (2015). Recollection-related increases in functional connectivity predict individual differences in memory accuracy. Journal of Neuroscience, 35(4), 1763–1772. http://doi.org/10.1523/JNEUROSCI.3219-14.2015 CrossRef  Google Scholar  PubMed 
  41. Lamont, A.C., Stewart-Williams, S., & Podd, J. (2005). Face recognition and aging: Effects of target age and memory load. Memory & Cognition, 33(6), 1017–1024. http://doi.org/10.3758/BF03193209 CrossRef  Google Scholar  PubMed 
  42. Lockhart, S.N., Mayda, A.B.V., Roach, A.E., Fletcher, E., Carmichael, O., Maillard, P., & DeCarli, C. (2012). Episodic memory function is associated with multiple measures of white matter integrity in cognitive aging. Frontiers in Human Neuroscience, 6, 56. http://doi.org/10.3389/fnhum.2012.00056 CrossRef  Google Scholar  PubMed 
  43. Luk, G., Bialystok, E., Craik, F.I.M., & Grady, C.L. (2011). Lifelong bilingualism maintains white matter integrity in older adults. Journal of Neuroscience, 31(46), 16808–16813. http://doi.org/10.1523/JNEUROSCI.4563-11.2011 CrossRef  Google Scholar 
  44. McKhann, G.M., Drachman, D., Folstein, M.F., Katzman, R., Price, D., & Stadlan, E.M. (1984). Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology, 34(7), 939–944. http://www.ncbi.nlm.nih.gov/pubmed/6610841 CrossRef  Google Scholar  PubMed 
  45. McKhann, G.M., Knopman, D.S., Chertkow, H., Hyman, B.T., Jack, C.R., Kawas, C.H., & Phelps, C.H. (2011). The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7(3), 263–269. http://doi.org/10.1016/j.jalz.2011.03.005 CrossRef  Google Scholar 
  46. McLaren, D.G., Ries, M.L., Xu, G., & Johnson, S.C. (2012). A generalized form of context-dependent psychophysiological interactions (gPPI): A comparison to standard approaches. Neuroimage, 61(4), 1277–1286. http://doi.org/10.1016/j.neuroimage.2012.03.068 CrossRef  Google Scholar  PubMed 
  47. McLaren, D.G., Sperling, R.A., & Atri, A. (2014). Flexible modulation of network connectivity related to cognition in alzheimer’s disease. Neuroimage, 100, 544–557. http://doi.org/10.1016/j.neuroimage.2014.05.032 CrossRef  Google Scholar 
  48. McNab, F., & Klingberg, T. (2008). Prefrontal cortex and basal ganglia control access to working memory. Nature Neuroscience, 11(1), 103–107. http://doi.org/10.1038/nn2024 CrossRef  Google Scholar  PubMed 
  49. Metzler-Baddeley, C., Jones, D.K., Belaroussi, B., Aggleton, J.P., & O’Sullivan, M.J. (2011). Frontotemporal connections in episodic memory and aging: A diffusion MRI tractography study. The Journal of Neuroscience, 31(37), 13236–13245. http://doi.org/10.1523/JNEUROSCI.2317-11.2011 CrossRef  Google Scholar 
  50. Morcom, A.M., Good, C.D., Frackowiak, R.S.J., & Rugg, M.D. (2003). Age effects on the neural correlates of successful memory encoding. Brain, 126(1), 213–229. http://doi.org/10.1093/brain/awg020 CrossRef  Google Scholar  PubMed 
  51. Nandedkar, S., & Stalberg, E. (1983). Simulation of macro EMG motor unit potentials. Electroencephalography and Clinical Neurophysiology, 56(1), 52–62. http://doi.org/10.1016/0013-4694(83)90006-8 CrossRef  Google Scholar 
  52. Nicholas, C.R., Okonkwo, O.C., Bendlin, B.B., Oh, J.M., Asthana, S., Rowley, H.A., & Johnson, S.C. (2014). Posteromedial hyperactivation during episodic recognition among people with memory decline: Findings from the WRAP study. Brain Imaging and Behavior. [Epub ahead of print]. http://doi.org/10.1007/s11682-014-9322-z Google Scholar 
  53. O’Sullivan, M., Jones, D.K., Summers, P.E., Morris, R.G., Williams, S.C., & Markus, H.S. (2001). Evidence for cortical “disconnection” as a mechanism of age-related cognitive decline. Neurology, 57(4), 632–638. http://doi.org/10.1212/WNL.57.4.632 CrossRef  Google Scholar  PubMed 
  54. Persson, J., Nyberg, L., Lind, J., Larsson, A., Nilsson, L.G., Ingvar, M., & Buckner, R.L. (2006). Structure-function correlates of cognitive decline in aging. Cerebral Cortex, 16(7), 907–915. http://doi.org/10.1093/cercor/bhj036 CrossRef  Google Scholar 
  55. Pfefferbaum, A., Adalsteinsson, E., & Sullivan, E.V. (2005). Frontal circuitry degradation marks healthy adult aging: Evidence from diffusion tensor imaging. Neuroimage, 26(3), 891–899. http://doi.org/10.1016/j.neuroimage.2005.02.034 CrossRef  Google Scholar  PubMed 
  56. Poletti, C.E., & Creswell, G. (1977). Fornix system efferent projections in the squirrel monkey: An experimental degeneration study. The Journal of Comparative Neurology, 175(1), 101–128. http://doi.org/10.1002/cne.901750107 CrossRef  Google Scholar 
  57. Rajah, M.N., Languay, R., & Grady, C.L. (2011). Age-related changes in right middle frontal gyrus volume correlate with altered episodic retrieval activity. Journal of Neuroscience, 31(49), 17941–17954. http://doi.org/10.1523/JNEUROSCI.1690-11.2011 CrossRef  Google Scholar  PubMed 
  58. Raz, N., Rodrigue, K.M., Kennedy, K.M., Dahle, C., Head, D., & Acker, J.D. (2003). Differential age-related changes in the regional metencephalic volumes in humans: A 5-year follow-up. Neuroscience Letters, 349(3), 163–166. http://doi.org/10.1016/S0304-3940(03)00820-6 CrossRef  Google Scholar  PubMed 
  59. Reitan, R., & Wolfson, D. (1993). The Halstead-Reitan Neuropsychological Test Battery: Theory and clinical interpretation. Tucson, AZ: Neuropsychology Press. Google Scholar 
  60. Rodrigue, K.M., & Raz, N. (2004). Shrinkage of the entorhinal cortex over five years predicts memory performance in healthy adults. The Journal of Neuroscience, 24(4), 956–963. http://doi.org/10.1523/JNEUROSCI.4166-03.2004 CrossRef  Google Scholar  PubMed 
  61. Rudebeck, S.R., Scholz, J., Millington, R., Rohenkohl, G., Johansen-Berg, H., & Lee, A.C.H. (2009). Fornix microstructure correlates with recollection but not familiarity memory. The Journal of Neuroscience, 29(47), 14987–14992. http://doi.org/10.1523/JNEUROSCI.4707-09.2009 CrossRef  Google Scholar 
  62. Rugg, M.D., & Vilberg, K.L. (2013). Brain networks underlying episodic memory retrieval. Current Opinion in Neurobiology, 23(2), 255–260. http://doi.org/10.1016/j.conb.2012.11.005 CrossRef  Google Scholar 
  63. Sadeh, T., Shohamy, D., Levy, D.R., Reggev, N., & Maril, A. (2011). Cooperation between the hippocampus and the striatum during episodic encoding. Journal of Cognitive Neuroscience, 23(7), 1597–1608. http://doi.org/10.1162/jocn.2010.21549 CrossRef  Google Scholar 
  64. Sager, M.A., Hermann, B., & La Rue, A. (2005). Middle-aged children of persons with Alzheimer’s disease: APOE genotypes and cognitive function in the Wisconsin Registry for Alzheimer’s Prevention. Journal of Geriatric Psychiatry and Neurology, 18(4), 245–249. http://doi.org/10.1177/0891988705281882 CrossRef  Google Scholar  PubMed 
  65. Salami, A., Pudas, S., & Nyberg, L. (2014). Elevated hippocampal resting-state connectivity underlies deficient neurocognitive function in aging. Proceedings of the National Academy of Sciences of the United States of America, 111(49), 17654–17659. http://doi.org/10.1073/pnas.1410233111 CrossRef  Google Scholar 
  66. Schacter, D.L., Savage, C.R., Alpert, N.M., Rauch, S.L., & Albert, M.S. (1996). The role of hippocampus and frontal cortex in age-related memory changes: A PET study. Neuroreport, 7(6), 1165–1169. CrossRef  Google Scholar  PubMed 
  67. Schedlbauer, A.M., Copara, M.S., Watrous, A.J., & Ekstrom, A.D. (2014). Multiple interacting brain areas underlie successful spatiotemporal memory retrieval in humans. Scientific Reports, 4, 6431. http://doi.org/10.1038/srep06431 CrossRef  Google Scholar  PubMed 
  68. Schiavetto, A., Köhler, S., Grady, C.L., Winocur, G., & Moscovitch, M. (2002). Neural correlates of memory for object identity and object location: Effects of aging. Neuropsychologia, 40(8), 1428–1442. http://doi.org/10.1016/S0028-3932(01)00206-8 CrossRef  Google Scholar 
  69. Schmahmann, J.D., & Pandya, D.N. (2007). The complex history of the fronto-occipital fasciculus. Journal of the History of the Neurosciences, 16(4), 362–377. http://doi.org/10.1080/09647040600620468 CrossRef  Google Scholar  PubMed 
  70. Schmidt, M. (1996). Rey Auditory Verbal Learning Test: RAVLT : A Handbook. Western Psychological Services. Retrieved from http://books.google.com/books/about/Rey_Auditory_Verbal_Learning_Test.html?id=UOcPRAAACAAJ&pgis=1 Google Scholar 
  71. Staresina, B.P., Cooper, E., & Henson, R.N. (2013). Reversible information flow across the medial temporal lobe: The hippocampus links cortical modules during memory retrieval. The Journal of Neuroscience, 33(35), 14184–14192. http://doi.org/10.1523/JNEUROSCI.1987-13.2013 CrossRef  Google Scholar 
  72. Steffener, J., Habeck, C.G., & Stern, Y. (2012). Age-related changes in task related functional network connectivity. PLoS One, 7(9), e44421. http://doi.org/10.1371/journal.pone.0044421 CrossRef  Google Scholar  PubMed 
  73. Takahashi, S., Yonezawa, H., Takahashi, J., Kudo, M., Inoue, T., & Tohgi, H. (2002). Selective reduction of diffusion anisotropy in white matter of Alzheimer disease brains measured by 3.0 Tesla magnetic resonance imaging. Neuroscience Letters, 332(1), 45–48. http://doi.org/S030439400200914X [pii]. CrossRef  Google Scholar  PubMed 
  74. Tang, Y., Nyengaard, J.R., Pakkenberg, B., & Gundersen, H.J. (1997). Age-induced white matter changes in the human brain: a stereological investigation. Neurobiology of Aging, 18(6), 600–615. CrossRef  Google Scholar  PubMed 
  75. Trenerry, M., Crosson, B., Deboe, J., & Leber, L. (1989). Stroop Neuropsychological Screening Test. Odessa, FL: Psychological Assessment Resources, Inc. Google Scholar 
  76. Tulving, E. (1984). Precis of elements of episodic. The Behavioral and Brain Sciences, 7(2), 223–268. http://doi.org/http://dx.doi.org/10.1017/S0140525X0004440X CrossRef  Google Scholar 
  77. Vakil, E., Blachstein, H., & Soroker, N. (2004). Differential effect of right and left basal ganglionic infarctions on procedural learning. Cognitive and Behavioral Neurology, 17(2), 62–73. http://doi.org/10.1097/01.wnn.0000094553.44085.25 CrossRef  Google Scholar 
  78. Wakana, S., Jiang, H., Nagae-Poetscher, L.M., van Zijl, P.C.M., & Mori, S. (2004). Fiber tract-based atlas of human white matter anatomy. Radiology, 230(1), 77–87. http://doi.org/10.1148/radiol.2301021640 CrossRef  Google Scholar 
  79. Wang, Y., Gupta, A., Liu, Z., Zhang, H., Escolar, M.L., Gilmore, J.H., & Styner, M. (2011). DTI registration in atlas based fiber analysis of infantile Krabbe disease. Neuroimage, 55(4), 1577–1586. http://doi.org/10.1016/j.neuroimage.2011.01.038 CrossRef  Google Scholar  PubMed 
  80. Watrous, A.J., Tandon, N., Conner, C.R., Pieters, T., & Ekstrom, A.D. (2013). Frequency-specific network connectivity increases underlie accurate spatiotemporal memory retrieval. Nature Neuroscience, 16(3), 349–356. http://doi.org/10.1038/nn.3315 CrossRef  Google Scholar  PubMed 
  81. Williams, Z.M., & Eskandar, E.N. (2006). Selective enhancement of associative learning by microstimulation of the anterior caudate. Nature Neuroscience, 9(4), 562–568. http://doi.org/10.1038/nn1662 CrossRef  Google Scholar  PubMed 
  82. Xu, G., McLaren, D.G., Ries, M.L., Fitzgerald, M.E., Bendlin, B.B., Rowley, H.A., & Johnson, S.C. (2009). The influence of parental history of Alzheimer’s disease and apolipoprotein E epsilon4 on the BOLD signal during recognition memory. Brain, 132(Pt 2), 383–391. http://doi.org/10.1093/brain/awn254 CrossRef  Google Scholar  PubMed 
  83. Yin, H.H., Ostlund, S.B., Knowlton, B.J., & Balleine, B.W. (2005). The role of the dorsomedial striatum in instrumental conditioning. European Journal of Neuroscience, 22(2), 513–523. http://doi.org/10.1111/j.1460-9568.2005.04218.x CrossRef  Google Scholar 
  84. Yonelinas, A.P., Widaman, K., Mungas, D., Reed, B., Weiner, M.W., & Chui, H.C. (2007). Memory in the aging brain: Doubly dissociating the contribution of the hippocampus and entorhinal cortex. Hippocampus, 17(11), 1134–1140. http://doi.org/10.1002/hipo.20341 CrossRef  Google Scholar 
  85. Zahr, N.M., Rohlfing, T., Pfefferbaum, A., & Sullivan, E.V. (2009). Problem solving, working memory, and motor correlates of association and commissural fiber bundles in normal aging: A quantitative fiber tracking study. Neuroimage, 44(3), 1050–1062. http://doi.org/10.1016/j.neuroimage.2008.09.046 CrossRef  Google Scholar 
  86. Zhang, H., Avants, B.B., Yushkevich, P.A., Woo, J.H., Wang, S., McCluskey, L.F., & Gee, J.C. (2007). High-dimensional spatial normalization of diffusion tensor images improves the detection of white matter differences: An example study using amyotrophic lateral sclerosis. IEEE Transactions on Medical Imaging, 26(11), 1585–1597. http://doi.org/10.1109/TMI.2007.906784 CrossRef  Google Scholar 
  87. Zhang, H., Yushkevich, P.A., Alexander, D.C., & Gee, J.C. (2006). Deformable registration of diffusion tensor MR images with explicit orientation optimization. Medical Image Analysis, 10(5), 764–785. http://doi.org/10.1016/j.media.2006.06.004 CrossRef  Google Scholar 
  88. Zhang, H., Yushkevich, P.A., Rueckert, D., & Gee, J.C. (2007). Unbiased white matter atlas construction using diffusion tensor images. Medical Image Computing and Computer-Assisted Intervention, 10(Pt 2), 211–218. Google Scholar  PubMed 
  89. Zhuang, L., Sachdev, P.S., Trollor, J.N., Kochan, N.A., Reppermund, S., Brodaty, H., & Wen, W. (2012). Microstructural white matter changes in cognitively normal individuals at risk of amnestic MCI. Neurology, 79(8), 748–754. http://doi.org/10.1212/WNL.0b013e3182661f4d CrossRef  Google Scholar  PubMed 
Salience and Default Mode Network Coupling Predicts Cognition in Aging and Parkinson’s Disease
Author(s)
  • Deepti Putcha | Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts
  • Robert S. Ross | Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, Department of Psychology, University of New Hampshire, Durham, New Hampshire
  • Alice Cronin-Golomb | Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts
  • Amy C. Janes | Brain Imaging Center, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, Massachusetts
  • Chantal E. Stern | Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts

Correspondence
E-mail address | dputcha@bu.edu

Disclosures
The authors declare no competing financial interests.

Abstract
Objectives:

Cognitive impairment is common in Parkinson’s disease (PD). Three neurocognitive networks support efficient cognition: the salience network, the default mode network, and the central executive network. The salience network is thought to switch between activating and deactivating the default mode and central executive networks. Anti-correlated interactions between the salience and default mode networks in particular are necessary for efficient cognition. Our previous work demonstrated altered functional coupling between the neurocognitive networks in non-demented individuals with PD compared to age-matched control participants. Here, we aim to identify associations between cognition and functional coupling between these neurocognitive networks in the same group of participants.

Methods:

We investigated the extent to which intrinsic functional coupling among these neurocognitive networks is related to cognitive performance across three neuropsychological domains: executive functioning, psychomotor speed, and verbal memory. Twenty-four non-demented individuals with mild to moderate PD and 20 control participants were scanned at rest and evaluated on three neuropsychological domains.

Results:

PD participants were impaired on tests from all three domains compared to control participants. Our imaging results demonstrated that successful cognition across healthy aging and Parkinson’s disease participants was related to anti-correlated coupling between the salience and default mode networks. Individuals with poorer performance scores across groups demonstrated more positive salience network/default-mode network coupling.

Conclusions:

Successful cognition relies on healthy coupling between the salience and default mode networks, which may become dysfunctional in PD. These results can help inform non-pharmacological interventions (repetitive transcranial magnetic stimulation) targeting these specific networks before they become vulnerable in early stages of Parkinson’s disease. (JINS, 2016,22, 205–215)

Bibliography
  1. Aarsland, D., Andersen, K., Larsen, J.P., Lolk, A., & Kragh-Sorensen, P. (2003). Prevalence and characteristics of dementia in Parkinson disease: An 8-year prospective study. Archives of Neurology, 60(3), 387–392. CrossRef  Google Scholar 
  2. Barone, P., Aarsland, D., Burn, D., Emre, M., Kulisevsky, J., & Weintraub, D. (2011). Cognitive impairment in nondemented Parkinson’s disease. Movement Disorders, 26(14), 2483–2495. doi:10.1002/mds.23919 CrossRef  Google Scholar  PubMed 
  3. Beckmann, C.F., Mackay, C.E., Filippini, N., & Smith, S.M. (2009). Group comparison of resting-state FMRI data using multi-subject ICA and dual regression. Paper presented at the OHBM. Google Scholar 
  4. Bonnelle, V., Ham, T.E., Leech, R., Kinnunen, K.M., Mehta, M.A., Greenwood, R.J., && Sharp, D.J. (2012). Salience network integrity predicts default mode network function after traumatic brain injury. Proceedings of the National Academy of Sciences of the United States of America, 109(12), 4690–4695. doi:10.1073/pnas.1113455109 CrossRef  Google Scholar  PubMed 
  5. Bosboom, J.L., Stoffers, D., & Wolters, E. (2004). Cognitive dysfunction and dementia in Parkinson’s disease. Journal of Neural Transmission, 111(10-11), 1303–1315. doi:10.1007/s00702-004-0168-1 CrossRef  Google Scholar  PubMed 
  6. Bressler, S.L., & Menon, V. (2010). Large-scale brain networks in cognition: Emerging methods and principles. Trends in Cognitive Sciences, 14(6), 277–290. doi:10.1016/j.tics.2010.04.004 CrossRef  Google Scholar  PubMed 
  7. Bronnick, K., Alves, G., Aarsland, D., Tysnes, O.B., & Larsen, J.P. (2011). Verbal memory in drug-naive, newly diagnosed Parkinson’s disease. The retrieval deficit hypothesis revisited. Neuropsychology, 25(1), 114–124. doi:10.1037/a0020857 CrossRef  Google Scholar 
  8. Buckner, R.L., Andrews-Hanna, J.R., & Schacter, D.L. (2008). The brain’s default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38. CrossRef  Google Scholar 
  9. Buddenberg, L.A., & Davis, C. (2000). Test-retest reliability of the Purdue Pegboard Test. The American Journal of Occupational Therapy, 54(5), 555–558. CrossRef  Google Scholar  PubMed 
  10. Chikama, M., McFarland, N.R., Amaral, D.G., & Haber, S.N. (1997). Insular cortical projections to functional regions of the striatum correlate with cortical cytoarchitectonic organization in the primate. The Journal of Neuroscience, 17(24), 9686–9705. Google Scholar  PubMed 
  11. Chiong, W., Wilson, S.M., D’Esposito, M., Kayser, A.S., Grossman, S.N., Poorzand, P., & Rankin, K.P. (2013). The salience network causally influences default mode network activity during moral reasoning. Brain, 136(Pt 6), 1929–1941. doi:10.1093/brain/awt066 CrossRef  Google Scholar  PubMed 
  12. Christopher, L., Duff-Canning, S., Koshimori, Y., Segura, B., Boileau, I., Chen, R., & Strafella, A.P. (2015). Salience network and parahippocampal dopamine dysfunction in memory-impaired Parkinson disease. Annals of Neurology, 77(2), 269–280. doi:10.1002/ana.24323 CrossRef  Google Scholar  PubMed 
  13. Christopher, L., Koshimori, Y., Lang, A.E., Criaud, M., & Strafella, A.P. (2014). Uncovering the role of the insula in non-motor symptoms of Parkinson’s disease. Brain, 137, 2143–2154. doi:awu084 [pii] CrossRef  Google Scholar  PubMed 
  14. Christopher, L., Marras, C., Duff-Canning, S., Koshimori, Y., Chen, R., Boileau, I., & Strafella, A.P. (2014). Combined insular and striatal dopamine dysfunction are associated with executive deficits in Parkinson’s disease with mild cognitive impairment. Brain, 137(Pt 2), 565–575. doi:awt337 [pii] CrossRef  Google Scholar  PubMed 
  15. Cole, D.M., Beckmann, C.F., Long, C.J., Matthews, P.M., Durcan, M.J., & Beaver, J.D. (2010). Nicotine replacement in abstinent smokers improves cognitive withdrawal symptoms with modulation of resting brain network dynamics. Neuroimage, 52(2), 590–599. doi:10.1016/j.neuroimage.2010.04.251 CrossRef  Google Scholar  PubMed 
  16. Dikmen, S.S., Heaton, R.K., Grant, I., & Temkin, N.R. (1999). Test-retest reliability and practice effects of expanded Halstead-Reitan Neuropsychological Test Battery. Journal of the International Neuropsychological Society, 5(4), 346–356. CrossRef  Google Scholar  PubMed 
  17. Dirnberger, G., & Jahanshahi, M. (2013). Executive dysfunction in Parkinson’s disease: A review. Journal of Neuropsychology, 7(2), 193–224. doi:10.1111/jnp.12028 CrossRef  Google Scholar  PubMed 
  18. Disbrow, E.A., Carmichael, O., He, J., Lanni, K.E., Dressler, E.M., Zhang, L., & Sigvardt, K.A. (2014). Resting state functional connectivity is associated with cognitive dysfunction in non-demented people with Parkinson’s disease. Journal of Parkinsons Disease, 4, 453–465. doi:1J0371M16R3R8714 [pii] Google Scholar 
  19. Dosenbach, N.U., Visscher, K.M., Palmer, E.D., Miezin, F.M., Wenger, K.K., Kang, H.C., & Petersen, S.E. (2006). A core system for the implementation of task sets. Neuron, 50(5), 799–812. doi:S0896-6273(06)00349-7 [pii] CrossRef  Google Scholar 
  20. Doyen, A.L., & Carlier, M. (2002). Measuring handedness: A validation study of Bishop’s reaching card test. Laterality, 7(2), 115–130. doi:10.1080/13576500143000140 CrossRef  Google Scholar 
  21. Duan, X., Liao, W., Liang, D., Qiu, L., Gao, Q., Liu, C., & Chen, H. (2012). Large-scale brain networks in board game experts: Insights from a domain-related task and task-free resting state. PLoS One, 7(3), e32532. doi:10.1371/journal.pone.0032532 CrossRef  Google Scholar  PubMed 
  22. Filippini, N., MacIntosh, B.J., Hough, M.G., Goodwin, G.M., Frisoni, G.B., Smith, S.M., & Mackay, C.E. (2009). Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. Proceedings of the National Academy of Sciences of the United States of America, 106(17), 7209–7214. doi:0811879106 [pii]. CrossRef  Google Scholar  PubMed 
  23. Foltynie, T., Brayne, C.E., Robbins, T.W., & Barker, R.A. (2004). The cognitive ability of an incident cohort of Parkinson’s patients in the UK. The CamPaIGN study. Brain, 127(Pt 3), 550–560. doi:10.1093/brain/awh067 CrossRef  Google Scholar  PubMed 
  24. Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Van Essen, D.C., & Raichle, M.E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9673–9678. CrossRef  Google Scholar  PubMed 
  25. Fox, M.D., Snyder, A.Z., Vincent, J.L., & Raichle, M.E. (2007). Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior. Neuron, 56(1), 171–184. doi:S0896-6273(07)00666-6 [pii] CrossRef  Google Scholar  PubMed 
  26. Fox, P.T., Laird, A.R., Fox, S.P., Fox, P.M., Uecker, A.M., Crank, M., & Lancaster, J.L. (2005). BrainMap taxonomy of experimental design: Description and evaluation. Human Brain Mapping, 25(1), 185–198. doi:10.1002/hbm.20141 CrossRef  Google Scholar  PubMed 
  27. Fransson, P., & Marrelec, G. (2008). The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: Evidence from a partial correlation network analysis. Neuroimage, 42(3), 1178–1184. CrossRef  Google Scholar 
  28. Fudge, J.L., Breitbart, M.A., Danish, M., & Pannoni, V. (2005). Insular and gustatory inputs to the caudal ventral striatum in primates. Journal of Comparitive Neurology, 490(2), 101–118. doi:10.1002/cne.20660 CrossRef  Google Scholar  PubMed 
  29. Greicius, M.D., Krasnow, B., Reiss, A.L., & Menon, V. (2003). Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100(1), 253–258. doi:10.1073/pnas.0135058100 CrossRef  Google Scholar  PubMed 
  30. Huang, C., Mattis, P., Tang, C., Perrine, K., Carbon, M., & Eidelberg, D. (2007). Metabolic brain networks associated with cognitive function in Parkinson’s disease. Neuroimage, 34(2), 714–723. doi:10.1016/j.neuroimage.2006.09.003 CrossRef  Google Scholar  PubMed 
  31. Janes, A.C., Farmer, S., Frederick, B., Nickerson, L.D., & Lukas, S.E. (2014). An increase in tobacco craving is associated with enhanced medial prefrontal cortex network coupling. PLoS One, 9(2), e88228. doi:10.1371/journal.pone.0088228 CrossRef  Google Scholar  PubMed 
  32. Janvin, C., Aarsland, D., Larsen, J.P., & Hugdahl, K. (2003). Neuropsychological profile of patients with Parkinson’s disease without dementia. Dementia and Geriatric Cognitive Disorders, 15(3), 126–131. doi:68483 CrossRef  Google Scholar  PubMed 
  33. Janvin, C., Larsen, J.P., Aarsland, D., & Hugdahl, K. (2006). Subtypes of mild cognitive impairment in Parkinson’s disease: Progression to dementia. Movement Disorders, 21(9), 1343–1349. doi:10.1002/mds.20974 CrossRef  Google Scholar 
  34. Jilka, S.R., Scott, G., Ham, T., Pickering, A., Bonnelle, V., Braga, R.M., & Sharp, D.J. (2014). Damage to the salience network and interactions with the default mode network. Journal of Neuroscience, 34(33), 10798–10807. doi:10.1523/JNEUROSCI.0518-14.2014 CrossRef  Google Scholar  PubMed 
  35. Kelly, A.M., Uddin, L.Q., Biswal, B.B., Castellanos, F.X., & Milham, M.P. (2008). Competition between functional brain networks mediates behavioral variability. Neuroimage, 39(1), 527–537. doi:10.1016/j.neuroimage.2007.08.008 CrossRef  Google Scholar  PubMed 
  36. Kish, S.J., Shannak, K., & Hornykiewicz, O. (1988). Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. New England Journal of Medicine, 318(14), 876–880. doi:10.1056/NEJM198804073181402 CrossRef  Google Scholar 
  37. Klepac, N., Trkulja, V., Relja, M., & Babic, T. (2008). Is quality of life in non-demented Parkinson’s disease patients related to cognitive performance? A clinic-based cross-sectional study. European Journal of Neurology, 15(2), 128–133. doi:10.1111/j.1468-1331.2007.02011.x CrossRef  Google Scholar 
  38. Kortte, K.B., Horner, M.D., & Windham, W.K. (2002). The trail making test, part B: Cognitive flexibility or ability to maintain set? Applied Neuropsychology, 9(2), 106–109. doi:10.1207/S15324826AN0902_5 CrossRef  Google Scholar 
  39. Krajcovicova, L., Mikl, M., Marecek, R., & Rektorova, I. (2012). The default mode network integrity in patients with Parkinson’s disease is levodopa equivalent dose-dependent. Journal of Neural Transmission, 119(4), 443–454. doi:10.1007/s00702-011-0723-5 CrossRef  Google Scholar  PubMed 
  40. Kudlicka, A., Clare, L., & Hindle, J.V. (2011). Executive functions in Parkinson’s disease: Systematic review and meta-analysis. Movement Disorders, 26(13), 2305–2315. doi:10.1002/mds.23868 CrossRef  Google Scholar 
  41. Laird, A.R., Fox, P.M., Eickhoff, S.B., Turner, J.A., Ray, K.L., McKay, D.R., & Fox, P.T. (2011). Behavioral interpretations of intrinsic connectivity networks. Journal of Cognitive Neuroscience, 23(12), 4022–4037. doi:10.1162/jocn_a_00077 CrossRef  Google Scholar 
  42. Laird, A.R., Lancaster, J.L., & Fox, P.T. (2005). BrainMap: The social evolution of a human brain mapping database. Neuroinformatics, 3(1), 65–78. doi:NI:3:1:065 [pii] CrossRef  Google Scholar  PubMed 
  43. Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4, 863. doi:10.3389/fpsyg.2013.00863 CrossRef  Google Scholar  PubMed 
  44. Leech, R., & Sharp, D.J. (2014). The role of the posterior cingulate cortex in cognition and disease. Brain, 137(Pt 1), 12–32. doi:10.1093/brain/awt162 CrossRef  Google Scholar  PubMed 
  45. Lewis, S.J., Cools, R., Robbins, T.W., Dove, A., Barker, R.A., & Owen, A.M. (2003). Using executive heterogeneity to explore the nature of working memory deficits in Parkinson’s disease. Neuropsychologia, 41(6), 645–654. CrossRef  Google Scholar  PubMed 
  46. Lewis, S.J., Dove, A., Robbins, T.W., Barker, R.A., & Owen, A.M. (2003). Cognitive impairments in early Parkinson’s disease are accompanied by reductions in activity in frontostriatal neural circuitry. The Journal of Neuroscience, 23(15), 6351–6356. doi:23/15/6351 [pii] Google Scholar  PubMed 
  47. Lewis, S.J., Slabosz, A., Robbins, T.W., Barker, R.A., & Owen, A.M. (2005). Dopaminergic basis for deficits in working memory but not attentional set-shifting in Parkinson’s disease. Neuropsychologia, 43(6), 823–832. doi:S0028-3932(04)00266-0 [pii] CrossRef  Google Scholar 
  48. Mamikonyan, E., Moberg, P.J., Siderowf, A., Duda, J.E., Have, T.T., Hurtig, H.I., & Weintraub, D. (2009). Mild cognitive impairment is common in Parkinson’s disease patients with normal Mini-Mental State Examination (MMSE) scores. Parkinsonism & Related Disorders, 15(3), 226–231. doi:10.1016/j.parkreldis.2008.05.006 CrossRef  Google Scholar  PubMed 
  49. Martinu, K., Degroot, C., Madjar, C., Strafella, A.P., & Monchi, O. (2012). Levodopa influences striatal activity but does not affect cortical hyper-activity in Parkinson’s disease. European Journal of Neuroscience, 35, 572–583. doi:10.1111/j.1460-9568.2011 CrossRef  Google Scholar 
  50. Menon, V. (2011). Large-scale brain networks and psychopathology: A unifying triple network model. Trends in Cognitive Sciences, 15(10), 483–506. doi:S1364-6613(11)00171-9 [pii] CrossRef  Google Scholar  PubMed 
  51. Menon, V., & Uddin, L.Q. (2010). Saliency, switching, attention and control: A network model of insula function. Brain Structure & Function, 214(5-6), 655–667. doi:10.1007/s00429-010-0262-0 CrossRef  Google Scholar  PubMed 
  52. Middleton, F.A., & Strick, P.L. (2000). Basal ganglia and cerebellar loops: Motor and cognitive circuits. Brain Research. Brain Research Reviews, 31(2-3), 236–250. doi:S0165017399000405 [pii] CrossRef  Google Scholar  PubMed 
  53. Miller, I.N., Neargarder, S., Risi, M.M., & Cronin-Golomb, A. (2013). Frontal and posterior subtypes of neuropsychological deficit in Parkinson’s disease. Behavioral Neuroscience, 127(2), 175–183. doi:10.1037/a0031357 CrossRef  Google Scholar  PubMed 
  54. Mitrushina, M., Satz, P., Chervinsky, A., & D’Elia, L. (1991). Performance of four age groups of normal elderly on the Rey Auditory-Verbal Learning Test. Journal of Clinical Psychology, 47(3), 351–357.3.0.CO;2-S>CrossRef Google Scholar  PubMed 
  55. Monchi, O., Petrides, M., Mejia-Constain, B., & Strafella, A.P. (2006). Cortical activity in Parkinson’s disease during executive processing depends on striatal involvement. Brain, 130(Pt 1), 233–244. doi:awl326 [pii] CrossRef  Google Scholar  PubMed 
  56. Moustafa, A.A., Krishna, R., Eissa, A.M., & Hewedi, D.H. (2013). Factors underlying probabilistic and deterministic stimulus-response learning performance in medicated and unmedicated patients with Parkinson’s disease. Neuropsychology, 27(4), 498–510. doi:2013-25138-010 [pii] CrossRef  Google Scholar 
  57. Narayanan, N.S., Rodnitzky, R.L., & Uc, E.Y. (2013). Prefrontal dopamine signaling and cognitive symptoms of Parkinson’s disease. Reviews in the Neurosciences, 24(3), 267–278. doi:10.1515/revneuro-2013-0004 CrossRef  Google Scholar 
  58. Poletti, M., & Bonuccelli, U. (2013). Acute and chronic cognitive effects of levodopa and dopamine agonists on patients with Parkinson’s disease: A review. Therapeutic Advances in Psychopharmacology, 3(2), 101–113. doi:10.1177/2045125312470130 CrossRef  Google Scholar  PubMed 
  59. Postuma, R.B., & Dagher, A. (2006). Basal ganglia functional connectivity based on a meta-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. Cerebral Cortex, 16(10), 1508–1521. doi:bhj088 [pii] CrossRef  Google Scholar  PubMed 
  60. Putcha, D., Ross, R.S., Cronin-Golomb, A., Janes, A.C., & Stern, C.E. (2015). Altered intrinsic functional coupling between core neurocognitive networks in Parkinson’s disease. Neuroimage. Clinical, 7, 449–455. doi:10.1016/j.nicl.2015.01.012 CrossRef  Google Scholar  PubMed 
  61. Raichle, M.E., MacLeod, A.M., Snyder, A.Z., Powers, W.J., Gusnard, D.A., & Shulman, G.L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 676–682. CrossRef  Google Scholar  PubMed 
  62. Ravina, B., Marek, K., Eberly, S., Oakes, D., Kurlan, R., Ascherio, A., & Shoulson, I. (2012). Dopamine transporter imaging is associated with long-term outcomes in Parkinson’s disease. Movement Disorders, 27(11), 1392–1397. doi:10.1002/mds.25157 CrossRef  Google Scholar 
  63. Rey, A. (1964). L’examen clinique en psychologie. Paris: Presses Universitaires de France. Google Scholar 
  64. Schendan, H.E., Tinaz, S., Maher, S.M., & Stern, C.E. (2013). Frontostriatal and mediotemporal lobe contributions to implicit higher-order spatial sequence learning declines in aging and Parkinson’s disease. Behavioral Neuroscience, 127(2), 204–221. doi:2013-11369-003 [pii] CrossRef  Google Scholar  PubMed 
  65. Seeley, W.W., Menon, V., Schatzberg, A.F., Keller, J., Glover, G.H., Kenna, H., & Greicius, M.D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. The Journal of Neuroscience, 27(9), 2349–2356. doi:27/9/2349 [pii] CrossRef  Google Scholar  PubMed 
  66. Spreng, R.N., Mar, R.A., & Kim, A.S. (2009). The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: A quantitative meta-analysis. Journal of Cognitive Neuroscience, 21(3), 489–510. doi:10.1162/jocn.2008.21029 CrossRef  Google Scholar 
  67. Sridharan, D., Levitin, D.J., & Menon, V. (2008). A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proceedings of the National Academy of Sciences of the United States of America, 105(34), 12569–12574. doi:0800005105 [pii] CrossRef  Google Scholar 
  68. Strauss, E., Sherman, E., & Spreen, O. (2006). A compendium of neuropsychological tests: Administration, norms, and commentaryed (3rd ed.). Cambridge: Oxford University Press. Google Scholar 
  69. Tessitore, A., Esposito, F., Vitale, C., Santangelo, G., Amboni, M., Russo, A., & Tedeschi, G. (2012). Default-mode network connectivity in cognitively unimpaired patients with Parkinson disease. Neurology, 79(23), 2226–2232. doi:WNL.0b013e31827689d6 [pii] CrossRef  Google Scholar  PubMed 
  70. Tiffin, J., & Asher, E.J. (1948). The Purdue pegboard; Norms and studies of reliability and validity. Journal of Applied Psychology, 32(3), 234–247. CrossRef  Google Scholar 
  71. Tinaz, S., Lauro, P., Hallett, M., & Horovitz, S.G. (2015). Deficits in task-set maintenance and execution networks in Parkinson’s disease. Brain Structure & Function. doi:10.1007/s00429-014-0981-8 Google Scholar 
  72. Tinaz, S., Schendan, H.E., & Stern, C.E. (2008). Fronto-striatal deficit in Parkinson’s disease during semantic event sequencing. Neurobiology of Aging, 29(3), 397–407. doi:S0197-4580(06)00400-3 [pii] CrossRef  Google Scholar  PubMed 
  73. Tombaugh, T.N. (2004). Trail Making Test A and B: Normative data stratified by age and education. Archives of Clinical Neuropsychology, 19(2), 203–214. doi:10.1016/S0887-6177(03)00039-8 CrossRef  Google Scholar 
  74. Uc, E.Y., McDermott, M.P., Marder, K.S., Anderson, S.W., Litvan, I., Como, P.G., … Parkinson Study Group DATATOP Investigators. (2009). Incidence of and risk factors for cognitive impairment in an early Parkinson disease clinical trial cohort. Neurology, 73(18), 1469–1477. doi:10.1212/WNL.0b013e3181bf992f CrossRef  Google Scholar 
  75. Uc, E.Y., Rizzo, M., Anderson, S.W., Qian, S., Rodnitzky, R.L., & Dawson, J.D. (2005). Visual dysfunction in Parkinson disease without dementia. Neurology, 65(12), 1907–1913. doi:01.wnl.0000191565.11065.11 [pii] CrossRef  Google Scholar 
  76. van Eimeren, T., Monchi, O., Ballanger, B., & Strafella, A.P. (2009). Dysfunction of the default mode network in Parkinson disease: A functional magnetic resonance imaging study. Archives of Neurology, 66(7), 877–883. doi:66/7/877 [pii] CrossRef  Google Scholar  PubMed 
  77. Weissman, D.H., Roberts, K.C., Visscher, K.M., & Woldorff, M.G. (2006). The neural bases of momentary lapses in attention. Nature Neuroscience, 9(7), 971–978. doi:10.1038/nn1727 CrossRef  Google Scholar  PubMed 
  78. Williams-Gray, C.H., Evans, J.R., Goris, A., Foltynie, T., Ban, M., Robbins, T.W., & Barker, R.A. (2009). The distinct cognitive syndromes of Parkinson’s disease: 5 year follow-up of the CamPaIGN cohort. Brain, 132(Pt 11), 2958–2969. doi:awp245 [pii] CrossRef  Google Scholar  PubMed 
Altered Effective Connectivity during a Processing Speed Task in Individuals with Multiple Sclerosis
Author(s)
  • E. Dobryakova | Kessler Foundation, Pleasant Valley Way, West Orange, New Jersey, Rutgers, New Jersey Medical School, Newark, New Jersey
  • S.L. Costa | Rutgers, New Jersey Medical School, Newark, New Jersey, Kessler Foundation, Executive Drive, West Orange, New Jersey
  • G.R. Wylie | Rutgers, New Jersey Medical School, Newark, New Jersey, Kessler Foundation, Executive Drive, West Orange, New Jersey, War Related Illness & Injury Study Center, Department of Veteran’s Affairs, East Orange, New Jersey
  • J. DeLuca | Kessler Foundation, Pleasant Valley Way, West Orange, New Jersey, Rutgers, New Jersey Medical School, Newark, New Jersey
  • H.M. Genova | Rutgers, New Jersey Medical School, Newark, New Jersey, Kessler Foundation, Executive Drive, West Orange, New Jersey

Correspondence

Disclosures
The authors declare no conflict of interest.

Abstract
Objectives:

Processing speed impairment is the most prevalent cognitive deficit in individuals with multiple sclerosis (MS). However, the neural mechanisms associated with processing speed remain under debate. The current investigation provides a dynamic representation of the functioning of the brain network involved in processing speed by examining effective connectivity pattern during a processing speed task in healthy adults and in MS individuals with and without processing speed impairment.

Methods:

Group assignment (processing speed impairedvs. intact) was based on participants’ performance on the Symbol Digit Modalities test (Parmenter, Testa, Schretlen, Weinstock-Guttman, & Benedict,2010). First, brain regions involved in the processing speed task were determined in healthy participants. Time series from these functional regions of interest of each group of participants were then subjected to the effective connectivity analysis (Independent Multiple-Sample Greedy Equivalence Search and Linear, Non-Gaussian Orientation, Fixed Structure algorithms) that showed causal influences of one region on another during task performance.

Results:

The connectivity pattern of the processing speed impaired group was significantly different from the connectivity pattern of the processing speed intact group and of the healthy control group. Differences in the strength of common connections were also observed.

Conclusions:

Effective connectivity results reveal that MS individuals with processing speed impairment not only have connections that differ from healthy participants and MS individuals without processing speed impairment, but also have increased strengths of connections. (JINS, 2016,22, 216–224)

Bibliography
  1. Barker-Collo, S.L. (2006). Quality of life in multiple sclerosis: Does information-processing speed have an independent effect? Archives of Clinical Neuropsychology, 21(2), 167–174. http://doi.org/10.1016/j.acn.2005.08.008 CrossRef  Google Scholar  PubMed 
  2. Bester, M., Lazar, M., Petracca, M., Babb, J.S., Herbert, J., Grossman, R.I., & Inglese, M. (2013). Tract-specific white matter correlates of fatigue and cognitive impairment in benign multiple sclerosis. Journal of the Neurological Sciences, 330(1-2), 61–66. http://doi.org/10.1016/j.jns.2013.04.005 CrossRef  Google Scholar 
  3. Bledowski, C., Kaiser, J., & Rahm, B. (2010). Basic operations in working memory: Contributions from functional imaging studies. Behavioural Brain Research, 214(2), 172–179. http://doi.org/10.1016/j.bbr.2010.05.041 CrossRef  Google Scholar  PubMed 
  4. Chiaravalloti, N.D., Stojanovic-Radic, J., & DeLuca, J. (2013). The role of speed versus working memory in predicting learning new information in multiple sclerosis. Journal of Clinical and Experimental Neuropsychology, 35(2), 180–191. http://doi.org/10.1080/13803395.2012.760537 CrossRef  Google Scholar 
  5. Compston, A., & Coles, A. (2008). Multiple sclerosis. Lancet, 372(9648), 1502–1517. http://doi.org/10.1016/S0140-6736(08)61620-7 CrossRef  Google Scholar 
  6. Cox, R.W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29(3), 162–173. CrossRef  Google Scholar  PubMed 
  7. Denney, D.R., & Lynch, S.G. (2009). The impact of multiple sclerosis on patients’ performance on the Stroop Test: Processing speed versus interference. Journal of the International Neuropsychological Society, 15(3), 451–458. http://doi.org/10.1017/S1355617709090730 CrossRef  Google Scholar 
  8. Deshpande, G., & Hu, X. (2012). Investigating effective brain connectivity from fMRI data: Past findings and current issues with reference to Granger causality analysis. Brain Connectivity, 2(5), 235–245. http://doi.org/10.1089/brain.2012.0091 CrossRef  Google Scholar 
  9. Forn, C., Belloch, V., Bustamante, J.C., Garbin, G., Parcet-Ibars, M.A., Sanjuan, A., & Avila, C. (2009). A symbol digit modalities test version suitable for functional MRI studies. Neuroscience Letters, 456, 11–14. CrossRef  Google Scholar 
  10. Friston, K.J. (1994). Functional and effective connectivity in neuroimaging: A synthesis. Human Brain Mapping, 2(1-2), 56–78. http://doi.org/10.1002/hbm.460020107 CrossRef  Google Scholar 
  11. Genova, H.M., DeLuca, J., Chiaravalloti, N., & Wylie, G. (2013). The relationship between executive functioning, processing speed, and white matter integrity in multiple sclerosis. Journal of Clinical and Experimental Neuropsychology, 35(6), 631–641. http://doi.org/10.1080/13803395.2013.806649 CrossRef  Google Scholar 
  12. Genova, H.M., Hillary, F.G., Wylie, G., Rypma, B., & Deluca, J. (2009). Examination of processing speed deficits in multiple sclerosis using functional magnetic resonance imaging. Journal of the International Neuropsychological Society, 15(3), 383–393. http://doi.org/10.1017/S1355617709090535 CrossRef  Google Scholar  PubMed 
  13. Genova, H.M., Lengenfelder, J, Chiaravalloti, N.D, Moore, N.B. & DeLuca, J. (2012). Processing speed versus working memory: contributions to an information-processing task in multiple sclerosis. Appl. Neuropsychol. Adult, 19, 132–140. CrossRef  Google Scholar 
  14. Kravits, D.J., Saleem, K.S., Baker, C.I., & Mishkin, M. (2012). A new neural framework for visuospatial processing. Nature Review Neuroscience, 12(4), 217–230. http://doi.org/10.1038/nrn3008.A CrossRef  Google Scholar 
  15. Larocque, J.J., Lewis-peacock, J.A., & Postle, B.R. (2014). Multiple neural states of representation in short-term memory? It’s a matter of attention. Frontiers in Human Neuroscience, 8(January), 1–14. http://doi.org/10.3389/fnhum.2014.00005 CrossRef  Google Scholar 
  16. Leavitt, V.M., Wylie, G., Genova, H.M., Chiaravalloti, N., & DeLuca, J. (2012). Altered effective connectivity during performance of an information processing speed task in multiple sclerosis. Multiple Sclerosis (Houndmills, Basingstoke, England), 18(4), 409–417. http://doi.org/10.1177/1352458511423651 CrossRef  Google Scholar  PubMed 
  17. Lee, P., Li, P.-C., Liu, C.-H., & Hsieh, C.-L. (2011). Test-retest reliability of two attention tests in schizophrenia. Archives of Clinical Neuropsychology, 26(5), 405–411. http://doi.org/10.1093/arclin/acr038 CrossRef  Google Scholar 
  18. Luckmann, H.C., Jacobs, H.I.L., Sack, A.T., & Lu, H.C. (2014). The cross-functional role of frontoparietal regions in cognition: Internal attention as the overarching mechanism. Progress in Neurobiology, 116, 66–86. CrossRef  Google Scholar  PubMed 
  19. McDonald, W.I., Compston, A., Edan, G., Goodkin, D., Hartung, H.P., Lublin, F.D., & Wolinsky, J.S. (2001). Recommended diagnostic criteria for multiple sclerosis: Guidelines from the International Panel on the Diagnosis of Multiple Sclerosis. Annals of Neurology, 50, 121–127. http://doi.org/10.1002/ana.1032 CrossRef  Google Scholar 
  20. Miller, G.A., & Chapman, J.P. (2001). Misunderstanding analysis of covariance. Journal of Abnormal Psychology, 110(1), 40–48. http://doi.org/10.1037/0021-843X.110.1.40 CrossRef  Google Scholar  PubMed 
  21. Mumford, J.A., & Ramsey, J.D. (2014). Bayesian networks for fMRI: A primer. Neuroimage, 86, 573–582. CrossRef  Google Scholar  PubMed 
  22. Papadopoulou, A., Müller-Lenke, N., Naegelin, Y., Kalt, G., Bendfeldt, K., Kuster, P., & Penner, I.-K. (2013). Contribution of cortical and white matter lesions to cognitive impairment in multiple sclerosis. Multiple Sclerosis (Houndmills, Basingstoke, England), 19(10), 1290–1296. http://doi.org/10.1177/1352458513475490 CrossRef  Google Scholar  PubMed 
  23. Parmenter, B.A., Testa, S.M., Schretlen, D.J., Weinstock-Guttman, B., & Benedict, R.H. (2010). The utility of regression-based norms in interpreting the minimal assessment of cognitive function in multiple sclerosis (MACFIMS). Journal of the International Neuropsychological Society, 16(1), 6–16. http://doi.org/10.1017/S1355617709990750 CrossRef  Google Scholar 
  24. Poldrack, R.A. (2007). Region of interest analysis for fMRI. Social Cognitive and Affective Neuroscience, 2(1), 67–70. http://doi.org/10.1093/scan/nsm006 CrossRef  Google Scholar 
  25. Poldrack, R.A., Mumford, J.A., & Nichols, T.E. (2011). Handbook of functional MRI: Data analysis. New York, NY: Cambridge University Press. CrossRef  Google Scholar 
  26. Ramsey, J.D., Hanson, S.J., & Glymour, C. (2011). Multi-subject search correctly identifies causal connections and most causal directions in the DCM models of the Smith et al. simulation study. Neuroimage, 58(3), 838–848. http://doi.org/10.1016/j.neuroimage.2011.06.068 CrossRef  Google Scholar 
  27. Ramsey, J.D., Hanson, S.J., Hanson, C., Halchenko, Y.O., Poldrack, R.A., & Glymour, C. (2010). Six problems for causal inference from fMRI. Neuroimage, 49(2), 1545–1558. http://doi.org/10.1016/j.neuroimage.2009.08.065 CrossRef  Google Scholar 
  28. Ramsey, J.D., Sanchez-romero, R., & Glymour, C. (2014). Non-Gaussian methods and high-pass filters in the estimation of effective connections. Neuroimage, 84, 986–1006. http://doi.org/10.1016/j.neuroimage.2013.09.062 CrossRef  Google Scholar 
  29. Sheridan, L.K., Fitzgerald, H.E., Adams, K.M., Nigg, J.T., Martel, M.M., Puttler, L.I., & Zucker, R.A. (2006). Normative Symbol Digit Modalities Test performance in a community-based sample. Archives of Clinical Neuropsychology, 21(1), 23–28. http://doi.org/10.1016/j.acn.2005.07.003 CrossRef  Google Scholar 
  30. Shomstein, S. (2012). Cognitive functions of the posterior parietal cortex: Top-down and bottom-up attentional control. Frontiers in Integrative Neuroscience, 6(July), 38. http://doi.org/10.3389/fnint.2012.00038 CrossRef  Google Scholar  PubMed 
  31. Smith, A. (1982). Symbol Digit Modalities Test (SDMT): Manual (revised). Los Angeles: Western Psychological Services. Google Scholar 
  32. Smith, S.M., Bandettini, P.A., Miller, K.L., Behrens, T.E.J., Friston, K.J., David, O., & Nichols, T.E. (2012). The danger of systematic bias in group-level FMRI-lag-based causality estimation. Neuroimage, 59(2), 1228–1229. http://doi.org/10.1016/j.neuroimage.2011.08.015 CrossRef  Google Scholar  PubMed 
  33. Smith, S.M., Miller, K.L., Salimi-Khorshidi, G., Webster, M., Beckmann, C.F., Nichols, T.E., & Woolrich, M.W. (2011). Network modelling methods for FMRI. Neuroimage, 54(2), 875–891. http://doi.org/10.1016/j.neuroimage.2010.08.063 CrossRef  Google Scholar  PubMed 
  34. Strober, L.B., Christodoulou, C., Benedict, R.H.B., Westervelt, H.J., Melville, P., Scherl, W.F., & Krupp, L.B. (2012). Unemployment in multiple sclerosis: The contribution of personality and disease. Multiple Sclerosis (Houndmills, Basingstoke, England), 18(5), 647–653. http://doi.org/10.1177/1352458511426735 CrossRef  Google Scholar 
  35. Van Schependom, J., D’hooghe, M.B., Cleynhens, K., D’hooge, M., Haelewyck, M.-C., De Keyser, J., & Nagels, G. (2015). Reduced information processing speed as primum movens for cognitive decline in MS. Multiple Sclerosis (Houndmills, Basingstoke, England), 21, 83–91. http://doi.org/10.1177/1352458514537012 CrossRef  Google Scholar  PubMed 
Differential Resting State Connectivity Patterns and Impaired Semantically Cued List Learning Test Performance in Early Course Remitted Major Depressive Disorder
Author(s)
  • Julia A. Rao | University of Illinois at Chicago, Department of Psychiatry, Chicago, Illinois
  • Lisanne M. Jenkins | University of Illinois at Chicago, Department of Psychiatry, Chicago, Illinois
  • Erica Hymen | University of Illinois at Chicago, Department of Psychiatry, Chicago, Illinois
  • Maia Feigon | University of Illinois at Chicago, Department of Psychiatry, Chicago, Illinois
  • Sara L. Weisenbach | University of Illinois at Chicago, Department of Psychiatry, Chicago, Illinois, University of Michigan Medical Center, Department of Psychiatry, Ann Arbor, Michigan, Jesse Brown Veterans Administration Hospital, Research & Development Program, Chicago, Illinois
  • Jon-Kar Zubieta | University of Michigan Medical Center, Department of Psychiatry, Ann Arbor, Michigan
  • Scott A. Langenecker | University of Illinois at Chicago, Department of Psychiatry, Chicago, Illinois, University of Michigan Medical Center, Department of Psychiatry, Ann Arbor, Michigan

Correspondence

Disclosures
There are no competing interests to declare for all authors.

Abstract
Objectives:

There is a well-known association between memory impairment and major depressive disorder (MDD). Additionally, recent studies are also showing resting-state functional magnetic resonance imaging (rsMRI) abnormalities in active and remitted MDD. However, no studies to date have examined both rs connectivity and memory performance in early course remitted MDD, nor the relationship between connectivity and semantically cued episodic memory.

Methods:

The rsMRI data from two 3.0 Tesla GE scanners were collected from 34 unmedicated young adults with remitted MDD (rMDD) and 23 healthy controls (HCs) between 18 and 23 years of age using bilateral seeds in the hippocampus. Participants also completed a semantically cued list-learning test, and their performance was correlated with hippocampal seed-based rsMRI. Regression models were also used to predict connectivity patterns from memory performance.

Results:

After correcting for sex, rMDD subjects performed worse than HCs on the total number of words recalled and recognized. rMDD demonstrated significant in-network hypoactivation between the hippocampus and multiple fronto-temporal regions, and multiple extra-network hyperconnectivities between the hippocampus and fronto-parietal regions when compared to HCs. Memory performance negatively predicted connectivity in HCs and positively predicted connectivity in rMDD.

Conclusions

Even when individuals with a history of MDD are no longer displaying active depressive symptoms, they continue to demonstrate worse memory performance, disruptions in hippocampal connectivity, and a differential relationship between episodic memory and hippocampal connectivity. (JINS, 2016,22, 225–239)

Bibliography
  1. Anand, A., Li, Y., Wang, Y., Wu, J., Gao, S., Bukhari, L., & Lowe, M.J. (2005). Activity and connectivity of brain mood regulating circuit in depression: A functional magnetic resonance study. Biological Psychiatry, 57, 1079–1088. CrossRef  Google Scholar  PubMed 
  2. Beck, A.T., Steer, R.A., & Brown, G.K. (1996). Manual for the Beck Depression Inventory II. San Antonio, TX: Psychology Corporation. Google Scholar 
  3. Behnken, A., Schöning, S., Gerβ, J., Konrad, C., de Jong-Meyer, R., Zwanzger, P., && Arolt, V. (2010). Persistent non-verbal memory impairment in remitted major depression. Journal of Affective Disorders, 122(1-2), 144–148. CrossRef  Google Scholar 
  4. Benton, A., Hamsher, K., Varney, N., & Spreen, O. (1978). Contributions to neuropsychological assessment: A clinical manual. New York: Oxford University Press. Google Scholar 
  5. Brett, M., Anton, J.-L., Valabregue, R., & Poline, J.-P. (2002). Region of interest analysis using an SPM toolbox. Poster presented at the 8th International Conference on Functional Mapping of the Human Brain, Sendai, Japan. Google Scholar 
  6. Briceño, E.M., Weisenbach, S.L., Rapport, L.J., Hazlett, K.E., Bieliauskas, L.A., Haase, B.D., & Langenecker, S.A. (2013). Shifted inferior frontal laterality in women with Major Depressive Disorder is related to emotion processing deficits. Psychological Medicine, 43(7), 1433–1445. CrossRef  Google Scholar  PubMed 
  7. Bora, E., Harrison, B.J., Yücel, M., & Pantelis, C. (2013). Cognitive impairment in euthymic major depressive disorder: A meta-analysis. Psychological Medicine, 43, 2017–2026. CrossRef  Google Scholar  PubMed 
  8. Brown, J.A. (1958). Some tests of the decay theory of immediate memory. Quarterly Journal of Experimental Psychology, 10, 12–21. CrossRef  Google Scholar 
  9. Burt, D.B., Zembar, M.J., & Niederehe, G. (1995). Depression and memory impairment: A meta-analysis of the association, its pattern, and specificity. Psychological Bulletin, 117(2), 285–305. CrossRef  Google Scholar  PubMed 
  10. Butters, M., Whyte, E., Nebes, R., Begley, A., Dew, M., Mulsant, B., & Becker, J. (2004). The nature and determinants of neuropsychological functioning in late-life depression. Archives of General Psychiatry, 61, 587–595. CrossRef  Google Scholar 
  11. Connolly, C.G., Wu, J., Ho, T.C., Hoeft, F., Wolkowitz, O., Eisendrath, S., & Yang, T.T. (2013). Resting-state functional connectivity of subgenual anterior cingulate cortex in depressed adolescents. Biological Psychiatry, 74, 898–907. CrossRef  Google Scholar  PubMed 
  12. Considine, C.M., Weisenbach, S.L., Walker, S.J., McFadden, E.M., Franti, L.M., Bieliauskas, L.A., & Langenecker, S.A. (2011). Auditory memory decrements, without dissimulation, among patents with major depressive disorder. Archives of Clinical Neuropsychology, 26, 445–453. CrossRef  Google Scholar 
  13. Delis, D., Kramer, J., Kaplan, E., & Ober, B. (2000). California Verbal Learning Test - II. San Antonio, TX: The Psychological Corporation. Google Scholar 
  14. Elderkin-Thompson, V., Moody, T., Knowlton, B., Hellemann, G., & Kumar, A. (2011). Explicit and implicit memory in late-life depression. The American Journal of Geriatric Psychiatry, 19(4), 364–373. CrossRef  Google Scholar 
  15. Frodl, T., Bokde, A.L.W., Scheuerecker, J., Lisiecka, D., Schoepf, V., Hampel, H., & Meisenzahl, E. (2010). Functional connectivity bias of the orbitofrontal cortex in drug-free patients with major depression. Biological Psychiatry, 67, 161–167. CrossRef  Google Scholar 
  16. Grant, D.A., & Berg, E. (1948). A behavioral analysis of degree of reinforcement and ease of shifting to new responses in a Weigl-type card-sorting problem. Journal of Experimental Psychology, 38, 404. CrossRef  Google Scholar 
  17. Greicius, M.D., Flores, B.H., Menon, V., Glover, G.H., Solvason, H.B., Kenna,& Schatzberg, A.F. (2007). Resting-state functional connectivity in major depression: Abnormally increased contributions from subgenual cingulate cortex and thalamus. Biological Psychiatry, 62, 429–437. CrossRef  Google Scholar 
  18. Hamilton, J.P., Chen, G., Thomason, M.E., Schwartz, M.E., & Gottlib, I.H. (2011). Investigating neural primacy in Major Depressive Disorder: Multivariate granger causality analysis of resting-state fMRI time-series data. Molecular Psychiatry, 16(7), 763–772. CrossRef  Google Scholar  PubMed 
  19. Hamilton, M. (1960). A rating scale for depression. Journal of Neurology and Neurosurgery in Psychiatry, 23, 56–62. CrossRef  Google Scholar 
  20. Hasselbalch, B.J., Knorr, U., & Kessing, L.V. (2011). Cognitive impairment in the remitted state of unipolar depressive disorder: A systematic review. Journal of Affective Disorders, 134(1-3), 20–31. CrossRef  Google Scholar  PubMed 
  21. Hermens, D.F., Naismith, S.L., Redoblado-Hodge, M.A., Scott, E.M., & Hickie, I.B. (2010). Impaired verbal memory in young adults with unipolar and bipolar depression. Early Intervention in Psychiatry, 3, 227–233. CrossRef  Google Scholar 
  22. Jacobs, R.H., Jenkins, L.M., Gabriel, L.B., Barba, A., Ryan, K.A., Weisenbach, S.L., & Welsh, R.C. (2014). Increased coupling of intrinsic networks in remitted depressed youth predicts ruminations and cognitive control. PLoS One, 9(8), e104366. CrossRef  Google Scholar 
  23. Kassel, M.T., Rao, J.A., Walker, S.J., Briceño, E.M., Gabriel, L.B., Welson, A.L., & Langenecker, S.A. (2015). Decreased fronto-limbic activation and disrupted semantic cued list learning in Major Depressive Disorder. Journal of the International Neuropsychological Society, in press. doi: 10.1017/S1355617716000023. Google Scholar 
  24. Kramer, J.H., Yaffe, K., Lengenfelder, J., & Delis, D.C. (2003). Age and gender interactions on verbal memory performance. Journal of the International Neuropsychological Society, 9(1), 97–102. CrossRef  Google Scholar  PubMed 
  25. Langenecker, S.A., Caveney, A.F., Persad, C.P., & Giordani, B. (2004). Semantic list learning test. Ann Arbor, MI: University of Michigan. Google Scholar 
  26. Langenecker, S.A., Weisenbach, S.L., Giordani, B., Briceño, E.M., Guidotti Breting, L.M., Schallmo, M.P., & Starkman, M.N. (2012). Impact of chronic hypercortisolemia on affective processing. Neuropharmacology, 62, 217–225. CrossRef  Google Scholar 
  27. Lewin, C., Wolgers, G., & Herlitz, A. (2001). Sex differences favoring women in verbal but not in visuospatial episodic memory. Neuropsychology, 15(2), 165–173. CrossRef  Google Scholar  PubMed 
  28. Lezak, M. (1995). Neuropsychological assessment (3rd ed.), New York: Oxford University Press. Google Scholar  PubMed 
  29. Liu, S., Wu, W., Qiu, L., Yang, X., Kuang, W., Chan, R.C.K., & Gong, Q. (2011). Resting-state functional connectivity treatment-resistant depression. American Journal of Psychiatry, 168, 642–648. Google Scholar 
  30. Liu, X., Li, L., Xiao, J., Yang, J., & Jiang, X. (2013). Abnormalities of autobiographical memory of patients with depressive disorders: A meta-analysis. Psychology and Psychotherapy: Theory, Research and Practice, 86(4), 353–373. CrossRef  Google Scholar 
  31. Marcos, T., Salamero, M., Gutierrez, F., Catalan, R., Gasto, C., & Lazaro, L. (1994). Cognitive dysfunctions in recovered melancholic patients. Journal of Affective Disorders, 32, 133–137. CrossRef  Google Scholar  PubMed 
  32. Mulligan, N.W. (2011). Implicit memory and depression: Preserved conceptual priming in subclinical depression. Cognition and Emotion, 25(4), 730–739. CrossRef  Google Scholar 
  33. Paelecke-Habermann, Y., Pohl, J., & Leplow, B. (2005). Attention and executive functions in remitted major depression patients. Journal of Affective Disorders, 89(1-3), 125–135. CrossRef  Google Scholar 
  34. Papez, J.W. (1937). A proposed mechanism of emotion. Archives of Neurology and Psychiatry, 7, 103–112. Google Scholar  PubMed 
  35. Pasterski, V., Zwierzynska, K., & Estes, Z. (2011). Sex differences in semantic categorization. Archives of Sexual Behavior, 40(6), 1183–1187. CrossRef  Google Scholar  PubMed 
  36. Peters, A.T., Jacobs, R.H., Crane, N.A., Ryan, K.A., Weisenbach, S.L., Ajilore, O., & Langenecker, S.A. (2015). Domain-specific impairment in cognitive control among remitted youth with a history of major depression. Early Intervention in Psychiatry. [Epub ahead of print]. CrossRef  Google Scholar  PubMed 
  37. Peterson, L.R., & Peterson, M.J. (1959). Short-term retention of individual verbal items. Journal of Experimental Psychology, 58, 193–198. CrossRef  Google Scholar  PubMed 
  38. Porter, R.J., Gallagher, P., Thompson, J.M., & Young, A.H. (2003). Neurocognitive impairment in drug-free patients with Major Depressive Disorder. British Journal of Psychiatry, 182, 214–220. CrossRef  Google Scholar  PubMed 
  39. Reitan, R.M. (1992). Trail Making Test: Manual for administration and scoring. Mesa, AZ: Reitan Neuropsychology Laboratory. Google Scholar 
  40. Rohling, M., Green, P., Allen, L., & Iverson, G. (2002). Depressive symptoms and neurocognitive test scores in patients passing symptom validity tests. Archives of Clinical Neuropsychology, 17, 205–222. CrossRef  Google Scholar  PubMed 
  41. Schallmo, M.P., Kassel, M.T., Weisenbach, S.L., Walker, S.J., Guidotti-Breting, L.M., Rao, J.A., & Langenecker, S.A. (2015). A new semantic list learning task to probe functioning of the Papez circuit. Journal of Clinical and Experimental Neuropsychology, 37(8), 816–833. CrossRef  Google Scholar  PubMed 
  42. Schmidt, M. (1996). Rey auditory verbal learning test: RAVLT: A handbook. Los Angeles, CA: Western Psychological Services. Google Scholar 
  43. Sheline, Y.I., Price, J.L., Yan, Z., & Mintun, M.A. (2010). Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proceedings of the National Academy of Sciences of the United States of America, 107(24), 11020–11025. CrossRef  Google Scholar  PubMed 
  44. Shipley, W.C., Gruber, C.P., Martin, T.A., & Klein, A.M. (2009). Shipley-2 manual. Los Angeles, CA: Western Psychological Services. Google Scholar 
  45. Snyder, H. (2013). Major Depressive Disorder is associated with broad impairments on neuropsychological measures of executive function: A meta-analysis and review. Psychological Bulletin, 139(1), 81–132. CrossRef  Google Scholar  PubMed 
  46. Stroop, J.R. (1938). Factors affecting speed in serial verbal reactions. Psychological Monographs, 50, 38. CrossRef  Google Scholar 
  47. Tahmasian, M., Knight, D.C., Manoliu, A., Schwerthöffer, D., Scherr, M., Chun, M., & Sorg, C. (2013). Aberrant intrinsic connectivity of hippocampus and amygdala overlap in the fronto-insular and dorsomedial-prefrontal cortex in major depressive disorder. Frontiers in Human Neuroscience, 7, 639. CrossRef  Google Scholar 
  48. Wechsler, D. (2008). Wechsler adult intelligence scale (4th ed.), (WAIS–IV). San Antonio, TX: NCS Pearson. Google Scholar 
  49. Weiland-Fiedler, P., Erickson, K., Waldeck, T., Luckenbaugh, D.A., Pike, D., Bonne, O., & Neumeister, A. (2004). Evidence for continuing neuropsychological impairments in depression. Journal of Affective Disorders, 82(2), 253–258. CrossRef  Google Scholar  PubMed 
  50. Weisenbach, S., Kassel, M., Rao, J., Weldon, A., Avery, E., Briceño, E., & Langenecker, S. (2014). Differential prefrontal and subcortical circuitry engagement during encoding of semantically related words in patients with late life depression. International Journal of Geriatric Psychiatry, 29(11), 1104–1115. CrossRef  Google Scholar  PubMed 
  51. Zhang, J., Wang, J., Wu, Q., Kuang, W., Huang, X., He, Y., &&Gong, Q. (2011). Disrupted brain connectivity networks in drug-naïve first-episode Major Depressive Disorder. Biological Psychiatry, 70, 334–342. CrossRef  Google Scholar  PubMed 
Graph Metrics of Structural Brain Networks in Individuals with Schizophrenia and Healthy Controls: Group Differences, Relationships with Intelligence, and Genetics
Author(s)
  • Ronald A. Yeo | Department of Psychology, University of New Mexico, Albuquerque, New Mexico
  • Sephira G. Ryman | Department of Psychology, University of New Mexico, Albuquerque, New Mexico, The Mind Research Network, Albuquerque, New Mexico
  • Martijn P. van den Heuvel | Department of Psychiatry, Brain Center Rudolph Magnus, University Medical Center Utrecht, Netherlands
  • Marcel A. de Reus | Department of Psychiatry, Brain Center Rudolph Magnus, University Medical Center Utrecht, Netherlands
  • Rex E. Jung | Department of Psychology, University of New Mexico, Albuquerque, New Mexico, Department of Neurosurgery, University of New Mexico, Albuquerque, New Mexico
  • Jessica Pommy | Department of Psychology, University of New Mexico, Albuquerque, New Mexico
  • Andrew R. Mayer | Department of Psychology, University of New Mexico, Albuquerque, New Mexico, The Mind Research Network, Albuquerque, New Mexico
  • Stefan Ehrlich | MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, Department of Child and Adolescent Psychiatry, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
  • S. Charles Schulz | Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota
  • Eric M. Morrow | Department of Molecular Biology, Cell Biology and Biochemistry, Laboratory for Molecular Medicine, Brown University, Providence, Rhode Island
  • Dara Manoach | Psychiatric Neuroimaging and Athinoula A. Martinos Center for Biomedical Imaging Massachusetts General Hospital, Charlestown, Massachusetts
  • Beng-Choon Ho | Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, Iowa
  • Scott R. Sponheim | Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota, Minneapolis Veterans Administration Health Care System, Minneapolis, New Mexico
  • Vince D. Calhoun | The Mind Research Network, Albuquerque, New Mexico, Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico

Correspondence
E-mail address | ryeo@unm.edu

Disclosures
The authors report no conflicts of interest.

Abstract
Objectives:

One of the most prominent features of schizophrenia is relatively lower general cognitive ability (GCA). An emerging approach to understanding the roots of variation in GCA relies on network properties of the brain. In this multi-center study, we determined global characteristics of brain networks using graph theory and related these to GCA in healthy controls and individuals with schizophrenia.

Methods:

Participants (N=116 controls, 80 patients with schizophrenia) were recruited from four sites. GCA was represented by the first principal component of a large battery of neurocognitive tests. Graph metrics were derived from diffusion-weighted imaging.

Results:

The global metrics of longer characteristic path length and reduced overall connectivity predicted lower GCA across groups, and group differences were noted for both variables. Measures of clustering, efficiency, and modularity did not differ across groups or predict GCA. Follow-up analyses investigated three topological types of connectivity—connections among high degree “rich club” nodes, “feeder” connections to these rich club nodes, and “local” connections not involving the rich club. Rich club and local connectivity predicted performance across groups. In a subsample (N=101 controls, 56 patients), a genetic measure reflecting mutation load, based on rare copy number deletions, was associated with longer characteristic path length.

Conclusions:

Results highlight the importance of characteristic path lengths and rich club connectivity for GCA and provide no evidence for group differences in the relationships between graph metrics and GCA. (JINS, 2016,22, 240–249)

Bibliography
  1. Andreasen, N.C. (1984a). Scale for the assessment of negative symptoms. Iowa City, IA: University of Iowa. Google Scholar  PubMed 
  2. Andreasen, N.C. (1984b). The scale for the assessment of positive symptoms. Iowa City, IA: The University of Iowa. Google Scholar 
  3. Andreasen, N.C., Flaum, M., & Arndt, S. (1992). The Comprehensive Assessment of Symptoms and History (CASH) - An instrument for assessing diagnosis and psychopathology. Archives of General Psychiatry, 49(8), 615–623. CrossRef  Google Scholar 
  4. Bassett, D.S., Meyer-Lindenberg, A., Achard, S., Duke, T., & Bullmore, E. (2006). Adaptive reconfiguration of fractal small-world human functional networks. Proceedings of the National Academy of Sciences, 103(51), 19518–19523. CrossRef  Google Scholar  PubMed 
  5. Bathelt, J., O’Reilly, H., Clayden, J.D., Cross, J.H., & de Haan, M. (2013). Functional brain network organisation of children between 2 and 5 years derived from reconstructed activity of cortical sources of high-density EEG recordings. Neuroimage, 82, 595–604. CrossRef  Google Scholar  PubMed 
  6. Blair, C. (2006). How similar are fluid cognition and general intelligence? A developmental neuroscience perspective on fluid cognition as an aspect of human cognitive ability. The Behavioral and Brain Sciences, 29(2), 109–125; discussion 125–160. Google Scholar  PubMed 
  7. Bohlken, M.M., Mandl, R.C.W., Brouwer, R.M., van den Heuvel, M.P., Hedman, A.M., Kahn, R.S., & Hulshoff Pol, H.E. (2014). Heritability of structural brain network topology: A DTI study of 156 twins. Human Brain Mapping, 35(10), 5295–5305. CrossRef  Google Scholar  PubMed 
  8. Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186–198. CrossRef  Google Scholar  PubMed 
  9. Caspi, A., Houts, R.M., Belsky, D.W., Goldman-Mellor, S.J., Harrington, H., Israel, S., & Moffitt, T.E. (2013). The p Factor: One general psychopathology factor in the structure of psychiatric disorders? Clinical Psychological Science, 2(2), 119–137. CrossRef  Google Scholar 
  10. Chang, L.C., Jones, D.K., & Pierpaoli, C. (2005). RESTORE: Robust estimation of tensors by outlier rejection. Magnetic Resonance in Medicine, 53, 1088–1095. CrossRef  Google Scholar  PubMed 
  11. Chen, J., Liu, J., & Calhoun, V.D. (2010). Correction of copy number data using principal component analysis. 2010 IEEE International Conference on Bioinformatics and Biomedicine Workshops, 827–828. Google Scholar 
  12. Chen, J., Liu, J., & Calhoun, V.D. (2011). A pipeline for copy number variation detection based on principal components analysis. Proceedings IEEE Bioinformatics and Biomedicine, 2011, 6975–6978. Google Scholar 
  13. Colizza, V., Flammini, A., Serrano, M.A., & Vespignani, A. (2006). Detecting rich-club ordering in complex networks. Nature Physics, 2(2), 110–115. CrossRef  Google Scholar 
  14. De Reus, M.A., Saenger, V.M., Kahn, R.S., & van den Heuvel, M.P. (2014). An edge-centric perspective on the human connectome: Link communities in the brain. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1653), 20130527. CrossRef  Google Scholar 
  15. De Reus, M., & van den Heuvel, M.P. (2014). Simulated rich club lesioning in brain networks: A scaffold for communication and integration? Frontiers in Human Neuroscience, 8, 647. CrossRef  Google Scholar 
  16. Deary, I.J. (2012). Intelligence. Annual Review of Psychology, 63, 453–482. CrossRef  Google Scholar  PubMed 
  17. Dennis, E.L., Jahanshad, N., Toga, A.W., McMahon, K.L., de Zubicaray, G.I., Martin, N.G., & Thompson, P.M. (2013). Test-retest reliability of graph theory measures of structural brain connectivity. Medical Imaging and Computer Assisted Intervention, 15, 305–312. Google Scholar 
  18. Dickinson, D., & Harvey, P.D. (2009). Systemic hypotheses for generalized cognitive deficits in schizophrenia: A new take on an old problem. Schizophrenia Bulletin, 35(2), 403–414. CrossRef  Google Scholar  PubMed 
  19. Fair, D.A., Cohen, A.L., Power, J.D., Dosenbach, N.U.F., Church, J.A., Miezin, F.M., & Petersen, S.E. (2009). Functional brain networks develop from a “local to distributed” organization. PLoS Computational Biology, 5(5), e1000381. CrossRef  Google Scholar 
  20. First, M., Spitzer, R.L., Gibbon, M., & Williams, J.B. (1997). Structured clinical interview for DSM-IV-TR axis I disorders. Washington, DC: American Psychiatric Press, Inc. Google Scholar 
  21. Fischer, F.U., Wolf, D., Scheurich, A., & Fellgiebel, A. (2014). Association of structural global brain network properties with intelligence in normal aging. PloS One, 9(1), e86258. CrossRef  Google Scholar 
  22. Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Segoone, F., Salat, D.H., & Dale, A.M. (2004). Automatically parcellating the human cerebral cortex. Cerebral Cortex, 14(1), 11–22. CrossRef  Google Scholar  PubMed 
  23. Gollub, R.L., Shoemaker, J.M., King, M.D., White, T., Ehrlich, S., Sponheim, S.R., & Andreasen, N.C. (2013). The MCIC collection: A shared repository of multi-modal, multi-site brain image data from a clinical investigation of schizophrenia. Neuroinformatics, 11(3), 367–388. CrossRef  Google Scholar 
  24. Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Wedeen, V.J., & Sporns, O. (2008). Mapping the structural core of human cerebral cortex. PLoS Biol, 6(7), e159. CrossRef  Google Scholar  PubMed 
  25. Haier, R.J., Colom, R., Schroeder, D.H., Condon, C.A., Tang, C., Eaves, E., & Head, K. (2009). Gray matter and intelligence factors: Is there a neuro-g? Intelligence, 37(2), 136. CrossRef  Google Scholar 
  26. Iturria-Medina, Y., Sotero, R.C., Canales-Rodriguez, E.J., Alemán-Gómez, Y., & Melie-Garcia, L. (2008). Studying the human brain anatomical network via diffusion-weighted MRI and graph theory. Neuroimage, 40(3), 1064–1076. CrossRef  Google Scholar  PubMed 
  27. Johnson, W., Bouchard, T.J., Krueger, R.F., McGue, M., & Gottesman, I.I. (2004). Just one g: Conistent results from three test batteries. Intelligence, 32(1), 85–107. CrossRef  Google Scholar 
  28. Kahn, R.S., & Keefe, R.S.E. (2013). Schizophrenia is a cognitive illness: Time for a change. JAMA Psychiatry, 70(10), 1107–1112. CrossRef  Google Scholar  PubMed 
  29. Latora, V., & Marchiori, M. (2001). Efficient behavior of small-world networks. Physical Review Letters, 87(19), 198701. CrossRef  Google Scholar  PubMed 
  30. Lencz, T., Knowles, E., Davies, G., Guha, S., Liewald, D.C., Starr, J.M., & Malhotra, A.K. (2014). Molecular genetic evidence for overlap between general cognitive ability and risk for schizophrenia: A report from the Cognitive Genomics consorTium (COGENT). Molecular Psychiatry, 19(2), 168–174. CrossRef  Google Scholar 
  31. Li, Y., Liu, Y., Li, J., Qin, W., Li, K., Yu, C., & Jiang, T. (2009). Brain anatomical network and intelligence. PLoS Computational Biology, 5(5), e1000395. CrossRef  Google Scholar  PubMed 
  32. Martin, A.K., Robinson, G., Reutens, D., & Mowry, B. (2014). Cognitive and structural neuroimaging characteristics of schizophrenia patients with large, rare copy number deletions. Psychiatry Research: Neuroimaging, 224, 311–318. CrossRef  Google Scholar 
  33. McAuley, J.J., da Fontoura Costa, L., & Caetano, T.S. (2007). Rich-club phenomenon across complex network hierarchies. Applied Physics Letters, 91(8), 084103. CrossRef  Google Scholar 
  34. Messé, A., Marrelec, G., Bellec, P., Perlbarg, V., Doyon, J., Pélégrini-Issac, M., & Benali, H. (2012). Comparing structural and functional graph theory features in the human brain using multimodal MRI. Irbm, 33(4), 244–253. CrossRef  Google Scholar 
  35. Mori, S., & van Zijl, P.C. (2002). Fiber tracking: Principles and strategies - A technical review. NMR Biomedicine, 15, 468–480. CrossRef  Google Scholar 
  36. Nisbett, R.E., Aronson, J., Blair, C., Dickens, W., Flynn, J., Halpern, D.F., & Turkheimer, E. (2012). Intelligence: New findings and theoretical developments. American Psychologist, 67(2), 130–159. CrossRef  Google Scholar  PubMed 
  37. Raznahan, A., Greenstein, D., Lee, N.R., Clasen, L.S., & Giedd, J.N. (2012). Prenatal growth in humans and postnatal brain maturation into late adolescence. Proceedings of the National Academy of Sciences, 109, 11366–11371. CrossRef  Google Scholar  PubMed 
  38. Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. Neuroimage, 52(3), 1059–1069. doi:10.1016/j.neuroimage.2009.10.003 CrossRef  Google Scholar  PubMed 
  39. Ryman, S.G., Vakhtin, A.A., Yeo, R.A., van den Heuvel, M.P., de Reus, M., Flores, R.A., Caprihan, A., & Jung, R.E. (n.d.). The cost of intelligence: Graph analysis of white matter connectivity in a large normal cohort. Under review. Google Scholar 
  40. Ryman, S.G., van den Heuvel, M.P., Yeo, R.A., Caprihan, A., Carrasco, J., Vakhtin, A.A., Jung, R.E. (2014). Sex differences in the relationship between white matter connectivity and creativity. Neuroimage, 101, 380–389. CrossRef  Google Scholar  PubMed 
  41. Schaefer, J., Giangrande, E., Weinberger, D.R., & Dickinson, D. (2013). The global cognitive impairment in schizophrenia: Consistent over decades and around the world. Schizophrenia Research, 150(1), 42–50. CrossRef  Google Scholar 
  42. Selig, J.P., & Preacher, K. (2008). Monte Carlo method for assessing mediation: An interactive tool for creating confidence intervals for indirect effects [Computer software]. Retrieved from http://quantpsy.org/Google Scholar 
  43. Senden, M., Deco, G., de Reus, M.A., Goebel, R., & van den Heuvel, M.P. (2014). Rich club organization supports a diverse set of functional network configurations. Neuroimage, 96, 174–182. CrossRef  Google Scholar  PubMed 
  44. Sponheim, S.R., Jung, R.E., Seidman, L.J., Mesholam-Gately, R.I., Manoach, D.S., O’Leary, D.S., & Schulz, S.C. (2010). Cognitive deficits in recent-onset and chronic schizophrenia. Journal of Psychiatric Research, 44(7), 421–428. CrossRef  Google Scholar  PubMed 
  45. Van den Heuvel, M.P., & Fornito, A. (2014). Brain networks in schizophrenia. Neuropsychology Review, 24(1), 32–48. CrossRef  Google Scholar 
  46. Van den Heuvel, M.P., Kahn, R.S., Goñi, J., & Sporns, O. (2012). High-cost, high capacity backbone for global brain communication. Proceedings of the National Academy of Sciences of the United States of America, 109, 11372–11377. CrossRef  Google Scholar  PubMed 
  47. Van den Heuvel, M.P., & Sporns, O. (2011). Rich-club organization of the human connectome. The Journal of Neuroscience, 31(44), 15775–15786. doi:10.1523/JNEUROSCI.3539-11.2011 CrossRef  Google Scholar  PubMed 
  48. Van den Heuvel, M.P., Sporns, O., Collin, G., Scheewe, T., Mandl, R.C.W., Cahn, W., & Kahn, R.S. (2013). Abnormal rich club organization and functional brain dynamics in schizophrenia. JAMA Psychiatry, 70(8), 783–792. doi:10.1001/jamapsychiatry.2013.1328 CrossRef  Google Scholar 
  49. Van den Heuvel, M.P., Stam, C.J., Kahn, R.S., & Hulshoff Pol, H.E. (2009). Efficiency of functional brain networks and intellectual performance. Journal of Neuroscience, 29(23), 7619–7624. CrossRef  Google Scholar 
  50. Von Ehrenstein, O.S., Mikolajczyk, R.T., & Zhang, J. (2009). Timing and trajectories of fetal growth related to cognitive development in childhood. American Journal of Epidemiology, 170(11), 1388–1395. CrossRef  Google Scholar  PubMed 
  51. Watts, D.J., & Strogatz, S.H. (1998). Collective dynamics of “small-world” networks. Nature, 393, 440–442. CrossRef  Google Scholar  PubMed 
  52. Yeo, R.A., Gangestad, S.W., Walton, E., Ehrlich, S., Pommy, J., Turner, J.A., & Calhoun, V.D. (2014). Genetic influences on cognitive endophenotypes in schizophrenia. Schizophrenia Research, 156(1), 71–75. CrossRef  Google Scholar 
  53. Yeo, R.A., & Gangestad, S.W. (2015). Developmental instability, mutation load, and neurodevelopmental disorders. In K.J. Mitchell (Ed.), Genetics of neurodevelopmental disorders (pp. 81–110). Hoboken, NJ: Wiley-Blackwell. CrossRef  Google Scholar 
  54. Yeo, R.A., Gangestad, S.W., Liu, J., Ehrlich, S., Thoma, R.J., Pommy, J.M., & Calhoun, V.D. (2013). The impact of copy number deletions on general cognitive ability and ventricle size in patients with schizophrenia and healthy control subjects. Biological Psychiatry, 73(6), 540–545. CrossRef  Google Scholar 
  55. Yeo, R.A., Martinez, D., Pommy, J., Ehrlich, S., Schulz, S.C., Ho, B.-C., & Calhoun, V.D. (2013). The impact of parent socio-economic status on executive functioning and cortical morphology in individuals with schizophrenia and healthy controls. Psychological Medicine, 44, 1257–1265. CrossRef  Google Scholar 
  56. Yu, Q., Plis, S.M., Erhardt, E.B., Allen, E.A., Sui, J., Kiehl, K.A., & Calhoun, V.D. (2011). Modular organization of functional network connectivity in healthy controls and patients with schizophrenia during the resting state. Frontiers in Systems Neuroscience, 5, 103. Google Scholar  PubMed 
  57. Yu, Q., Plis, S.M., Erhardt, E.B., Allen, E.A., Sui, J., Kiehl, K.A., & Calhoun, V.D. (2013). Disrupted correlation between low frequency power and connectivity strength of resting state brain networks in schizophrenia. Schizophrenia Research, 143(1), 165–171. CrossRef  Google Scholar 
  58. Zalesky, A., Fornito, A., Seal, M.L., Cocchi, L., Westin, C.-F., Bullmore, E.T., & Pantelis, C. (2011). Disrupted axonal fiber connectivity in schizophrenia. Biological Psychiatry, 69(1), 80–89. CrossRef  Google Scholar 
  59. Zhang, F., Gu, W., Hurles, M.E., & Lupski, J.R. (2009). Copy number variation in human health, disease, and evolution. Annual Review of Genomics and Human Genetics, 10, 451–481. CrossRef  Google Scholar  PubMed 
Brain Network Organization and Social Executive Performance in Frontotemporal Dementia
Author(s)
  • Lucas Sedeño | Laboratory of Experimental Psychology and Neuroscience (LPEN), INECO (Institute of Cognitive Neurology) and Institute of Neuroscience, Favaloro University, Buenos Aires, Argentina, UDP-INECO Foundation Core on Neuroscience (UIFCoN), Faculty of Psychology, Diego Portales University, Santiago, Chile, National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
  • Blas Couto | Laboratory of Experimental Psychology and Neuroscience (LPEN), INECO (Institute of Cognitive Neurology) and Institute of Neuroscience, Favaloro University, Buenos Aires, Argentina, UDP-INECO Foundation Core on Neuroscience (UIFCoN), Faculty of Psychology, Diego Portales University, Santiago, Chile, National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
  • Indira García-Cordero | Laboratory of Experimental Psychology and Neuroscience (LPEN), INECO (Institute of Cognitive Neurology) and Institute of Neuroscience, Favaloro University, Buenos Aires, Argentina
  • Margherita Melloni | Laboratory of Experimental Psychology and Neuroscience (LPEN), INECO (Institute of Cognitive Neurology) and Institute of Neuroscience, Favaloro University, Buenos Aires, Argentina, UDP-INECO Foundation Core on Neuroscience (UIFCoN), Faculty of Psychology, Diego Portales University, Santiago, Chile, National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
  • Sandra Baez | Laboratory of Experimental Psychology and Neuroscience (LPEN), INECO (Institute of Cognitive Neurology) and Institute of Neuroscience, Favaloro University, Buenos Aires, Argentina, UDP-INECO Foundation Core on Neuroscience (UIFCoN), Faculty of Psychology, Diego Portales University, Santiago, Chile, National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
  • Juan Pablo Morales Sepúlveda | UDP-INECO Foundation Core on Neuroscience (UIFCoN), Faculty of Psychology, Diego Portales University, Santiago, Chile
  • Daniel Fraiman | National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina, Laboratorio de Investigación en Neurociencia, Departamento de Matemática y Ciencias, Universidad de San Andrés, Buenos Aires, Argentina
  • David Huepe | UDP-INECO Foundation Core on Neuroscience (UIFCoN), Faculty of Psychology, Diego Portales University, Santiago, Chile
  • Esteban Hurtado | UDP-INECO Foundation Core on Neuroscience (UIFCoN), Faculty of Psychology, Diego Portales University, Santiago, Chile, Laboratorio de Lenguaje, Interacción y Fenomenología. Escuela de Psicología. Pontificia Universidad Católica de Chile, Chile
  • Diana Matallana | Intellectus Memory and Cognition Center, Mental Health and Psychiatry Department, San Ignacio Hospital, Aging Institute, Pontifical Javeriana University, Bogotá, Colombia
  • Rodrigo Kuljis | UDP-INECO Foundation Core on Neuroscience (UIFCoN), Faculty of Psychology, Diego Portales University, Santiago, Chile
  • Teresa Torralva | Laboratory of Experimental Psychology and Neuroscience (LPEN), INECO (Institute of Cognitive Neurology) and Institute of Neuroscience, Favaloro University, Buenos Aires, Argentina, UDP-INECO Foundation Core on Neuroscience (UIFCoN), Faculty of Psychology, Diego Portales University, Santiago, Chile, Australian Research Council (ACR) Centre of Excellence in Cognition and its Disorders, Macquarie University, New South Wales, Australia
  • Dante Chialvo | National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina, David Geffen School of Medicine, University of California, Los Angeles, California
  • Mariano Sigman | Universidad Torcuato Di Tella, Buenos Aires, Argentina
  • Olivier Piguet | Neuroscience Research Australia, Sydney, Australia and School of Medical Sciences, The University of New South Wales, Sydney, Australia, Australian Research Council (ACR) Centre of Excellence in Cognition and its Disorders, Macquarie University, New South Wales, Australia
  • Facundo Manes | Laboratory of Experimental Psychology and Neuroscience (LPEN), INECO (Institute of Cognitive Neurology) and Institute of Neuroscience, Favaloro University, Buenos Aires, Argentina, UDP-INECO Foundation Core on Neuroscience (UIFCoN), Faculty of Psychology, Diego Portales University, Santiago, Chile, National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina, Australian Research Council (ACR) Centre of Excellence in Cognition and its Disorders, Macquarie University, New South Wales, Australia
  • Agustin Ibanez | Laboratory of Experimental Psychology and Neuroscience (LPEN), INECO (Institute of Cognitive Neurology) and Institute of Neuroscience, Favaloro University, Buenos Aires, Argentina, UDP-INECO Foundation Core on Neuroscience (UIFCoN), Faculty of Psychology, Diego Portales University, Santiago, Chile, National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina, Australian Research Council (ACR) Centre of Excellence in Cognition and its Disorders, Macquarie University, New South Wales, Australia, Universidad Autónoma del Caribe, Barranquilla, Colombia

Correspondence
E-mail address | aibanez@ineco.org.ar

Disclosures
The authors have no competing interests to declare.

Abstract
Objectives:

Behavioral variant frontotemporal dementia (bvFTD) is characterized by early atrophy in the frontotemporoinsular regions. These regions overlap with networks that are engaged in social cognition-executive functions, two hallmarks deficits of bvFTD. We examine (i) whether Network Centrality (a graph theory metric that measures how important a node is in a brain network) in the frontotemporoinsular network is disrupted in bvFTD, and (ii) the level of involvement of this network in social-executive performance.

Methods:

Patients with probable bvFTD, healthy controls, and frontoinsular stroke patients underwent functional MRI resting-state recordings and completed social-executive behavioral measures.

Results:

Relative to the controls and the stroke group, the bvFTD patients presented decreased Network Centrality. In addition, this measure was associated with social cognition and executive functions. To test the specificity of these results for the Network Centrality of the frontotemporoinsular network, we assessed the main areas from six resting-state networks. No group differences or behavioral associations were found in these networks. Finally, Network Centrality and behavior distinguished bvFTD patients from the other groups with a high classification rate.

Conclusions:

bvFTD selectively affects Network Centrality in the frontotemporoinsular network, which is associated with high-level social and executive profile. (JINS, 2016,22, 250–262)

Bibliography
  1. Agosta, F., Sala, S., Valsasina, P., Meani, A., Canu, E., Magnani, G., & Filippi, M. (2013). Brain network connectivity assessed using graph theory in frontotemporal dementia. Neurology, 81(2), 134–143. doi:10.1212/WNL.0b013e31829a33f8 CrossRef  Google Scholar  PubMed 
  2. Altman, N.S. (1992). An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician, 46(3), 175–185. doi:10.1080/00031305.1992.10475879 Google Scholar 
  3. Baez, S., Couto, B., Torralva, T., Sposato, L.A., Huepe, D., Montanes, P., & Ibanez, A. (2014). Comparing moral judgments of patients with frontotemporal dementia and frontal stroke. JAMA Neurology, 71(9), 1172–1176. doi:10.1001/jamaneurol.2014.347 CrossRef  Google Scholar  PubMed 
  4. Baggio, H.C., Sala-Llonch, R., Segura, B., Marti, M.J., Valldeoriola, F., Compta, Y., & Junque, C. (2014). Functional brain networks and cognitive deficits in Parkinson’s disease. Human Brain Mapping, 35(9), 4620–4634. doi:10.1002/hbm.22499 CrossRef  Google Scholar  PubMed 
  5. Baron-Cohen, S., Jolliffe, T., Mortimore, C., & Robertson, M. (1997). Another advanced test of theory of mind: Evidence from very high functioning adults with autism or asperger syndrome. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 38(7), 813–822. CrossRef  Google Scholar  PubMed 
  6. Barttfeld, P., Wicker, B., Cukier, S., Navarta, S., Lew, S., Leiguarda, R., & Sigman, M. (2012). State-dependent changes of connectivity patterns and functional brain network topology in autism spectrum disorder. Neuropsychologia, 50(14), 3653–3662. doi:10.1016/j.neuropsychologia.2012.09.047 CrossRef  Google Scholar  PubMed 
  7. Barttfeld, P., Wicker, B., McAleer, P., Belin, P., Cojan, Y., Graziano, M., & Sigman, M. (2013). Distinct patterns of functional brain connectivity correlate with objective performance and subjective beliefs. Proceedings of the National Academy of Sciences of the United Sates of America, 110(28), 11577–11582. doi:10.1073/pnas.1301353110 CrossRef  Google Scholar  PubMed 
  8. Beckmann, C.F., DeLuca, M., Devlin, J.T., & Smith, S.M. (2005). Investigations into resting-state connectivity using independent component analysis. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 360(1457), 1001–1013. doi:10.1098/rstb.2005.1634 CrossRef  Google Scholar  PubMed 
  9. Brandes, U. (2001). A faster algorithm for betweenness centrality. Journal of Mathematical Sociology, 25(2), 163–177. CrossRef  Google Scholar 
  10. Brier, M.R., Thomas, J.B., Fagan, A.M., Hassenstab, J., Holtzman, D.M., Benzinger, T.L., & Ances, B.M. (2014). Functional connectivity and graph theory in preclinical Alzheimer’s disease. Neurobiol Aging, 35(4), 757–768. doi:10.1016/j.neurobiolaging.2013.10.081 CrossRef  Google Scholar  PubMed 
  11. Buckner, R.L., Sepulcre, J., Talukdar, T., Krienen, F.M., Liu, H., Hedden, T., & Johnson, K.A. (2009). Cortical hubs revealed by intrinsic functional connectivity: Mapping, assessment of stability, and relation to Alzheimer’s disease. The Journal of Neuroscience, 29(6), 1860–1873. doi:10.1523/JNEUROSCI.5062-08.2009 CrossRef  Google Scholar  PubMed 
  12. Butman, J., Allegri, R.F., Harris, P., & Drake, M. (2000). Spanish verbal fluency. Normative data in Argentina. Medicina (B Aires), 60(5 Pt 1), 561–564. Google Scholar  PubMed 
  13. Couto, B., Manes, F., Montanes, P., Matallana, D., Reyes, P., Velasquez, M., & Ibanez, A. (2013). Structural neuroimaging of social cognition in progressive non-fluent aphasia and behavioral variant of frontotemporal dementia. Frontiers in Human Neuroscience, 7, 467, doi:10.3389/fnhum.2013.00467 CrossRef  Google Scholar  PubMed 
  14. Chow, T.W., Hynan, L.S., & Lipton, A.M. (2006). MMSE scores decline at a greater rate in frontotemporal degeneration than in AD. Dementia and Geriatric Cognitive Disorders, 22(3), 194–199. doi:10.1159/000094870 CrossRef  Google Scholar 
  15. Damoiseaux, J.S., Rombouts, S.A., Barkhof, F., Scheltens, P., Stam, C.J., Smith, S.M., & Beckmann, C.F. (2006). Consistent resting-state networks across healthy subjects. Proceedings of the National Academy of Sciences of the United Sates of America, 103(37), 13848–13853. doi:10.1073/pnas.0601417103 CrossRef  Google Scholar  PubMed 
  16. Day, G.S., Farb, N.A., Tang-Wai, D.F., Masellis, M., Black, S.E., Freedman, M., & Chow, T.W. (2013). Salience network resting-state activity: Prediction of frontotemporal dementia progression. JAMA Neurology, 70(10), 1249–1253. doi:10.1001/jamaneurol.2013.3258 Google Scholar  PubMed 
  17. de Haan, W., Pijnenburg, Y.A., Strijers, R.L., van der Made, Y., van der Flier, W.M., Scheltens, P., & Stam, C.J. (2009). Functional neural network analysis in frontotemporal dementia and Alzheimer’s disease using EEG and graph theory. BMC Neuroscience, 10, 101, doi:10.1186/1471-2202-10-101 CrossRef  Google Scholar  PubMed 
  18. Decety, J. (2011). The neuroevolution of empathy. Annals of the New York Academy of Sciences, 1231, 35–45. doi:10.1111/j.1749-6632.2011.06027.x CrossRef  Google Scholar  PubMed 
  19. Eslinger, P.J., Moore, P., Anderson, C., & Grossman, M. (2011). Social cognition, executive functioning, and neuroimaging correlates of empathic deficits in frontotemporal dementia. The Journal of Neuropsychiatry and Clinical Neurosciences, 23(1), 74–82. doi:10.1176/appi.neuropsych.23.1.74 CrossRef  Google Scholar  PubMed 
  20. Farb, N.A., Grady, C.L., Strother, S., Tang-Wai, D.F., Masellis, M., Black, S., & Chow, T.W. (2013). Abnormal network connectivity in frontotemporal dementia: Evidence for prefrontal isolation. Cortex, 49(7), 1856–1873. doi:10.1016/j.cortex.2012.09.008 CrossRef  Google Scholar  PubMed 
  21. Filippi, M., Agosta, F., Scola, E., Canu, E., Magnani, G., Marcone, A., & Falini, A. (2013). Functional network connectivity in the behavioral variant of frontotemporal dementia. Cortex, 49(9), 2389–2401. doi:10.1016/j.cortex.2012.09.017 CrossRef  Google Scholar  PubMed 
  22. Freeman, L.C. (1977). A set of measures of centrality based on betweenness. Sociometry, 40(1), 35–41. CrossRef  Google Scholar 
  23. Garcia-Cordero, I., Sedeño, L., Fraiman, D., Craiem, D., de la Fuente, L.A., Salamone, P., & Ibanez, A. (2015). Stroke and neurodegeneration induce different connectivity aberrations in the insula. Stroke, doi:10.1161/STROKEAHA.115.009598 CrossRef  Google Scholar  PubMed 
  24. Gleichgerrcht, E., Roca, M., Manes, F., & Torralva, T. (2011). Comparing the clinical usefulness of the Institute of Cognitive Neurology (INECO) Frontal Screening (IFS) and the Frontal Assessment Battery (FAB) in frontotemporal dementia. Journal of Clinical and Experimental Neuropsychology, 33(9), 997–1004. doi:10.1080/13803395.2011.589375 CrossRef  Google Scholar 
  25. Goch, C.J., Stieltjes, B., Henze, R., Hering, J., Poustka, L., Meinzer, H.P., & Maier-Hein, K.H. (2014). Quantification of changes in language-related brain areas in autism spectrum disorders using large-scale network analysis. International Journal of Computer Assisted Radiology and Surgery, 9(3), 357–365. doi:10.1007/s11548-014-0977-0 CrossRef  Google Scholar  PubMed 
  26. Grefkes, C., & Fink, G.R. (2014). Connectivity-based approaches in stroke and recovery of function. Lancet Neurology, 13(2), 206–216. doi:10.1016/S1474-4422(13)70264-3 CrossRef  Google Scholar  PubMed 
  27. He, Y., Chen, Z., & Evans, A. (2008). Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer’s disease. The Journal of Neuroscience, 28(18), 4756–4766. doi:10.1523/JNEUROSCI.0141-08.2008 CrossRef  Google Scholar  PubMed 
  28. Ibanez, A., & Manes, F. (2012). Contextual social cognition and the behavioral variant of frontotemporal dementia. Neurology, 78(17), 1354–1362. CrossRef  Google Scholar  PubMed 
  29. Kalcher, K., Huf, W., Boubela, R.N., Filzmoser, P., Pezawas, L., Biswal, B., & Windischberger, C. (2012). Fully exploratory network independent component analysis of the 1000 functional connectomes database. Frontiers in Human Neuroscience, 6, 301. doi:10.3389/fnhum.2012.00301 CrossRef  Google Scholar  PubMed 
  30. Kennedy, D.P., & Adolphs, R. (2012). The social brain in psychiatric and neurological disorders. Trends in Cognitive Sciences, 16(11), 559–572. doi:10.1016/j.tics.2012.09.006 CrossRef  Google Scholar  PubMed 
  31. Kipps, C.M., Nestor, P.J., Acosta-Cabronero, J., Arnold, R., & Hodges, J.R. (2009). Understanding social dysfunction in the behavioural variant of frontotemporal dementia: The role of emotion and sarcasm processing. Brain, 132(3), 592–603. doi:10.1093/brain/awn314 CrossRef  Google Scholar  PubMed 
  32. Kril, J.J., Macdonald, V., Patel, S., Png, F., & Halliday, G.M. (2005). Distribution of brain atrophy in behavioral variant frontotemporal dementia. Journal of the Neurological Sciences, 232(1-2), 83–90. doi:10.1016/j.jns.2005.02.003 CrossRef  Google Scholar  PubMed 
  33. Kumfor, F., Irish, M., Leyton, C., Miller, L., Lah, S., Devenney, E., & Piguet, O. (2014). Tracking the progression of social cognition in neurodegenerative disorders. Journal of Neurology, Neurosurgery, and Psychiatry, 85(10), 1076–1083. doi:10.1136/jnnp-2013-307098 CrossRef  Google Scholar  PubMed 
  34. Lambon Ralph, M.A., Cipolotti, L., Manes, F., & Patterson, K. (2010). Taking both sides: Do unilateral anterior temporal lobe lesions disrupt semantic memory? Brain, 133(11), 3243–3255. CrossRef  Google Scholar  PubMed 
  35. Li, Y., Qin, Y., Chen, X., & Li, W. (2013). Exploring the functional brain network of Alzheimer’s disease: Based on the computational experiment. PLoS One, 8(9), e73186. doi:10.1371/journal.pone.0073186 CrossRef  Google Scholar  PubMed 
  36. Liu, Z., Zhang, Y., Yan, H., Bai, L., Dai, R., Wei, W., & Tian, J. (2012). Altered topological patterns of brain networks in mild cognitive impairment and Alzheimer’s disease: A resting-state fMRI study. Psychiatry Research, 202(2), 118–125. doi:10.1016/j.pscychresns.2012.03.002 CrossRef  Google Scholar  PubMed 
  37. MacQueen, J.B. (1967). Some methods for classification and analysis of multivariate observations. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1, 281–297. Google Scholar 
  38. Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience Methods, 164(1), 177–190. doi:10.1016/j.jneumeth.2007.03.024 CrossRef  Google Scholar  PubMed 
  39. McDonald, S., Flanagan, S., Rollins, J., & Kinch, J. (2003). TASIT: A new clinical tool for assessing social perception after traumatic brain injury. The Journal of Head Trauma Rehabilitation, 18(3), 219–238. CrossRef  Google Scholar  PubMed 
  40. Mesulam, M.M. (1986). Frontal cortex and behavior. Annals of Neurology, 19(4), 320–325. doi:10.1002/ana.410190403 CrossRef  Google Scholar  PubMed 
  41. Nestor, P.J. (2013). Degenerator tau/TDP-43: Rise of the machines. Journal of Neurology, Neurosurgery, and Psychiatry, 84(9), 945. doi:10.1136/jnnp-2012-304681 CrossRef  Google Scholar  PubMed 
  42. Nichols, T.E., & Holmes, A.P. (2002). Nonparametric permutation tests for functional neuroimaging: A primer with examples. Human Brain Mapping, 15(1), 1–25. CrossRef  Google Scholar  PubMed 
  43. Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.M. (2011). FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, 2011, 156869. doi:10.1155/2011/156869 CrossRef  Google Scholar  PubMed 
  44. Opsahl, T., Agneessens, F., & Skvoretz, J. (2010). Node centrality in weighted networks: Generalizing degree and shortest path. Social Networks, 32(3), 245–251. CrossRef  Google Scholar 
  45. Pievani, M., de Haan, W., Wu, T., Seeley, W.W., & Frisoni, G.B. (2011). Functional network disruption in the degenerative dementias. Lancet Neurology, 10(9), 829–843. doi:10.1016/S1474-4422(11)70158-2 CrossRef  Google Scholar  PubMed 
  46. Piguet, O., Hornberger, M., Mioshi, E., & Hodges, J.R. (2011). Behavioural-variant frontotemporal dementia: Diagnosis, clinical staging, and management. Lancet Neurology, 10(2), 162–172. doi:10.1016/S1474-4422(10)70299-4 CrossRef  Google Scholar  PubMed 
  47. Possin, K.L., Feigenbaum, D., Rankin, K.P., Smith, G.E., Boxer, A.L., Wood, K., & Kramer, J.H. (2013). Dissociable executive functions in behavioral variant frontotemporal and Alzheimer dementias. Neurology, 80(24), 2180–2185. doi:10.1212/WNL.0b013e318296e940 CrossRef  Google Scholar  PubMed 
  48. Rankin, K.P., Kramer, J.H., & Miller, B.L. (2005). Patterns of cognitive and emotional empathy in frontotemporal lobar degeneration. Cognitive and Behavioral Neurology, 18(1), 28–36. CrossRef  Google Scholar  PubMed 
  49. Rascovsky, K., Hodges, J.R., Knopman, D., Mendez, M.F., Kramer, J.H., Neuhaus, J., & Miller, B.L. (2011). Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain, 134(9), 2456–2477. doi:10.1093/brain/awr179 CrossRef  Google Scholar  PubMed 
  50. Rascovsky, K., Salmon, D.P., Lipton, A.M., Leverenz, J.B., DeCarli, C., Jagust, W.J., & Galasko, D. (2005). Rate of progression differs in frontotemporal dementia and Alzheimer disease. Neurology, 65(3), 397–403. doi:10.1212/01.wnl.0000171343.43314.6e CrossRef  Google Scholar  PubMed 
  51. Rosen, H.J., Gorno-Tempini, M.L., Goldman, W.P., Perry, R.J., Schuff, N., Weiner, M., & Miller, B.L. (2002). Patterns of brain atrophy in frontotemporal dementia and semantic dementia. Neurology, 58(2), 198–208. CrossRef  Google Scholar  PubMed 
  52. Rytty, R., Nikkinen, J., Paavola, L., Abou Elseoud, A., Moilanen, V., Visuri, A., & Remes, A.M. (2013). GroupICA dual regression analysis of resting state networks in a behavioral variant of frontotemporal dementia. Frontiers in Human Neuroscience, 7, 461. doi:10.3389/fnhum.2013.00461 CrossRef  Google Scholar 
  53. Sajjadi, S.A., Acosta-Cabronero, J., Patterson, K., Diaz-de-Grenu, L.Z., Williams, G.B., & Nestor, P.J. (2013). Diffusion tensor magnetic resonance imaging for single subject diagnosis in neurodegenerative diseases. Brain, 136(7), 2253–2261. doi:10.1093/brain/awt118 CrossRef  Google Scholar  PubMed 
  54. Sanz-Arigita, E.J., Schoonheim, M.M., Damoiseaux, J.S., Rombouts, S.A., Maris, E., Barkhof, F., & Stam, C.J. (2010). Loss of ‘small-world’ networks in Alzheimer’s disease: Graph analysis of FMRI resting-state functional connectivity. PLoS One, 5(11), e13788. doi:10.1371/journal.pone.0013788 CrossRef  Google Scholar  PubMed 
  55. Sedeño, L., Couto, B., Melloni, M., Canales-Johnson, A., Yoris, A., Baez, S., & Ibanez, A. (2014). How do you feel when you can’t feel your body? Interoception, functional connectivity and emotional processing in depersonalization-derealization disorder. PLoS One, 9(6), e98769. doi:10.1371/journal.pone.0098769 CrossRef  Google Scholar  PubMed 
  56. Seeley, W.W., Crawford, R., Rascovsky, K., Kramer, J.H., Weiner, M., Miller, B.L., & Gorno-Tempini, M.L. (2008). Frontal paralimbic network atrophy in very mild behavioral variant frontotemporal dementia. Archives of Neurology, 65(2), 249–255. doi:10.1001/archneurol.2007.38 CrossRef  Google Scholar  PubMed 
  57. Seo, E.H., Lee, D.Y., Lee, J.M., Park, J.S., Sohn, B.K., Lee, D.S., & Woo, J.I. (2013). Whole-brain functional networks in cognitively normal, mild cognitive impairment, and Alzheimer’s disease. PLoS One, 8(1), e53922. doi:10.1371/journal.pone.0053922 CrossRef  Google Scholar  PubMed 
  58. Singer, T. (2006). The neuronal basis and ontogeny of empathy and mind reading: Review of literature and implications for future research. Neuroscience and Biobehavioral Reviews, 30(6), 855–863. doi:10.1016/j.neubiorev.2006.06.011 CrossRef  Google Scholar  PubMed 
  59. Singer, T., & Lamm, C. (2009). The social neuroscience of empathy. Annals of the New York Academy of Sciences, 1156, 81–96. doi:10.1111/j.1749-6632.2009.04418.x CrossRef  Google Scholar  PubMed 
  60. Smith, S.M., Fox, P.T., Miller, K.L., Glahn, D.C., Fox, P.M., Mackay, C.E., & Beckmann, C.F. (2009). Correspondence of the brain’s functional architecture during activation and rest. Proceedings of the National Academy of Sciences of the United Sates of America, 106(31), 13040–13045. doi:10.1073/pnas.0905267106 CrossRef  Google Scholar 
  61. Sporns, O. (2014). Contributions and challenges for network models in cognitive neuroscience. Nature Neuroscience, 17(5), 652–660. doi:10.1038/nn.3690 CrossRef  Google Scholar  PubMed 
  62. Sporns, O., & Zwi, J.D. (2004). The small world of the cerebral cortex. Neuroinformatics, 2(2), 145–162. doi:10.1385/NI:2:2:145 CrossRef  Google Scholar  PubMed 
  63. Stanley, D.A., & Adolphs, R. (2013). Toward a neural basis for social behavior. Neuron, 80(3), 816–826. doi:10.1016/j.neuron.2013.10.038 CrossRef  Google Scholar 
  64. Supekar, K., & Menon, V. (2012). Developmental maturation of dynamic causal control signals in higher-order cognition: A neurocognitive network model. PLoS Computational Biology, 8(2), e1002374. doi:10.1371/journal.pcbi.1002374 CrossRef  Google Scholar  PubMed 
  65. Supekar, K., Menon, V., Rubin, D., Musen, M., & Greicius, M.D. (2008). Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Computational Biology, 4(6), e1000100. doi:10.1371/journal.pcbi.1000100 CrossRef  Google Scholar  PubMed 
  66. Tian, L., Wang, J., Yan, C., & He, Y. (2011). Hemisphere- and gender-related differences in small-world brain networks: A resting-state functional MRI study. Neuroimage, 54(1), 191–202. doi:10.1016/j.neuroimage.2010.07.066 CrossRef  Google Scholar  PubMed 
  67. Torralva, T., Roca, M., Gleichgerrcht, E., Lopez, P., & Manes, F. (2009). INECO Frontal Screening (IFS): A brief, sensitive, and specific tool to assess executive functions in dementia. Journal of the International Neuropsychological Society, 15(5), 777–786. doi:10.1017/S1355617709990415 CrossRef  Google Scholar  PubMed 
  68. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., & Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 15(1), 273–289. doi:10.1006/nimg.2001.0978 CrossRef  Google Scholar  PubMed 
  69. van den Heuvel, M., Mandl, R., & Hulshoff Pol, H. (2008). Normalized cut group clustering of resting-state FMRI data. PLoS One, 3(4), e2001. doi:10.1371/journal.pone.0002001 CrossRef  Google Scholar  PubMed 
  70. Van Dijk, K.R., Sabuncu, M.R., & Buckner, R.L. (2012). The influence of head motion on intrinsic functional connectivity MRI. Neuroimage, 59(1), 431–438. doi:10.1016/j.neuroimage.2011.07.044 CrossRef  Google Scholar  PubMed 
  71. Whitwell, J.L., Josephs, K.A., Avula, R., Tosakulwong, N., Weigand, S.D., Senjem, M.L., & Jack, C.R. Jr (2011). Altered functional connectivity in asymptomatic MAPT subjects: A comparison to bvFTD. Neurology, 77(9), 866–874. doi:10.1212/WNL.0b013e31822c61f2 CrossRef  Google Scholar  PubMed 
  72. Whitwell, J.L., Przybelski, S.A., Weigand, S.D., Ivnik, R.J., Vemuri, P., Gunter, J.L., & Josephs, K.A. (2009). Distinct anatomical subtypes of the behavioural variant of frontotemporal dementia: A cluster analysis study. Brain, 132(11), 2932–2946. doi:10.1093/brain/awp232 CrossRef  Google Scholar  PubMed 
  73. Xiang, J., Guo, H., Cao, R., Liang, H., & Chen, J. (2013). An abnormal resting-state functional brain network indicates progression towards Alzheimer’s disease. Neural Regeneration Research, 8(30), 2789–2799. doi:10.3969/j.issn.1673-5374.2013.30.001 Google Scholar  PubMed 
  74. Yao, Z., Zhang, Y., Lin, L., Zhou, Y., Xu, C., Jiang, T., & Alzheimer’s Disease Neuroimaging, I. (2010). Abnormal cortical networks in mild cognitive impairment and Alzheimer’s disease. PLoS Computational Biology, 6(11), e1001006. doi:10.1371/journal.pcbi.1001006 CrossRef  Google Scholar  PubMed 
  75. Zhou, J., Greicius, M.D., Gennatas, E.D., Growdon, M.E., Jang, J.Y., Rabinovici, G.D., & Seeley, W.W. (2010). Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer’s disease. Brain, 133(5), 1352–1367. doi:10.1093/brain/awq075 CrossRef  Google Scholar  PubMed 
  76. Zuo, X.N., Ehmke, R., Mennes, M., Imperati, D., Castellanos, F.X., Sporns, O., & Milham, M.P. (2012). Network centrality in the human functional connectome. Cerebral Cortex, 22(8), 1862–1875. doi:10.1093/cercor/bhr269 CrossRef  Google Scholar  PubMed 
Disrupted Intrinsic Connectivity among Default, Dorsal Attention, and Frontoparietal Control Networks in Individuals with Chronic Traumatic Brain Injury
Author(s)
  • Kihwan Han | Center for BrainHealth® , School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, Texas
  • Sandra B. Chapman | Center for BrainHealth® , School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, Texas
  • Daniel C. Krawczyk | Center for BrainHealth® , School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, Texas, Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas

Correspondence
E-mail address | kihwan.han@utdallas.edu

Disclosures
The authors declare no conflicts of interest.

Abstract
Objectives:

Individuals with chronic traumatic brain injury (TBI) often show detrimental deficits in higher order cognitive functions requiring coordination of multiple brain networks. Although assessing TBI-related deficits in higher order cognition in the context of network dysfunction is promising, few studies have systematically investigated altered interactions among multiple networks in chronic TBI.

Method:

We characterized disrupted resting-state functional connectivity of the default mode network (DMN), dorsal attention network (DAN), and frontoparietal control network (FPCN) whose interactions are required for internally and externally focused goal-directed cognition in chronic TBI. Specifically, we compared the network interactions of 40 chronic TBI individuals (8 years post-injury on average) with those of 17 healthy individuals matched for gender, age, and years of education.

Results:

The network-based statistic (NBS) on DMN-DAN-FPCN connectivity of these groups revealed statistically significant (pNBS<.05; |Z|>2.58) reductions in within-DMN, within-FPCN, DMN-DAN, and DMN-FPCN connectivity of the TBI group over healthy controls. Importantly, such disruptions occurred prominently in between-network connectivity. Subsequent analyses further exhibited the disrupted connectivity patterns of the chronic TBI group occurring preferentially in long-range and inter-hemispheric connectivity of DMN-DAN-FPCN. Most importantly, graph-theoretic analysis demonstrated relative reductions in global, local and cost efficiency (p<.05) as a consequence of the network disruption patterns in the TBI group.

Conclusion:

Our findings suggest that assessing multiple networks-of-interest simultaneously will allow us to better understand deficits in goal-directed cognition and other higher order cognitive phenomena in chronic TBI. Future research will be needed to better understand the behavioral consequences related to these network disruptions. (JINS, 2016,22, 263–279)

Bibliography
  1. Achard, S., & Bullmore, E. (2007). Efficiency and cost of economical brain functional networks. PLoS Computational Biology, 3, e17. doi:10.1371/journal.pcbi.0030017 CrossRef  Google Scholar  PubMed 
  2. Anderson, J.S., Druzgal, T.J., Lopez-Larson, M., Jeong, E.-K., Desai, K., & Yurgelun-Todd, D. (2011). Network anticorrelations, global regression, and phase-shifted soft tissue correction. Human Brain Mapping, 32, 919–934. CrossRef  Google Scholar 
  3. Arciniegas, D., Olincy, A., Topkoff, J., McRae, K., Cawthra, E., Filley, C.M., & Adler, L.E. (2000). Impaired auditory gating and P50 nonsuppression following traumatic brain injury. The Journal of Neuropsychiatry and Clinical Neurosciences, 12, 77–85. CrossRef  Google Scholar  PubMed 
  4. Baird, B., Smallwood, J., & Schooler, J.W. (2011). Back to the future: Autobiographical planning and the functionality of mind-wandering. Consciousness and Cognition, 20, 1604–1611. CrossRef  Google Scholar  PubMed 
  5. Beck, A.T., Steer, R.A. & Brown, G.K. (1996). BDI-II, Beck depression inventory: Manual (2nd ed). San Antonio, TX: Psychological Corporation, and Boston: Harcourt Brace. Google Scholar 
  6. Bengtsson, S.L., Dolan, R.J., & Passingham, R.E. (2011). Priming for self-esteem influences the monitoring of one’s own performance. Social Cognitive and Affective Neuroscience, 6, 417–425. CrossRef  Google Scholar  PubMed 
  7. Bonnelle, V., Ham, T.E., Leech, R., Kinnunen, K.M., Mehta, M.A., Greenwood, R.J., & Sharp, D.J. (2012). Salience network integrity predicts default mode network function after traumatic brain injury. Proceedings of the National Academy of Sciences of the United States of America, 109, 4690–4695. CrossRef  Google Scholar 
  8. Bonnelle, V., Leech, R., Kinnunen, K.M., Ham, T.E., Beckmann, C.F., De Boissezon, X., & Sharp, D.J. (2011). Default mode network connectivity predicts sustained attention deficits after traumatic brain injury. Journal of Neuroscience, 31, 13442–13451. CrossRef  Google Scholar 
  9. Caeyenberghs, K., Leemans, A., Heitger, M.H., Leunissen, I., Dhollander, T., Sunaert, S., & Swinnen, S.P. (2012). Graph analysis of functional brain networks for cognitive control of action in traumatic brain injury. Brain, 135, 1293–1307. CrossRef  Google Scholar  PubMed 
  10. Caeyenberghs, K., Leemans, A., Leunissen, I., Michiels, K., & Swinnen, S.P. (2013). Topological correlations of structural and functional networks in patients with traumatic brain injury. Frontiers in Human Neuroscience, 7, 726. doi:10.3389/fnhum.2013.00726 CrossRef  Google Scholar  PubMed 
  11. Castellanos, N.P., Paul, N., Ordonez, V.E., Demuynck, O., Bajo, R., Campo, P., & Maestu, F. (2010). Reorganization of functional connectivity as a correlate of cognitive recovery in acquired brain injury. Brain, 133, 2365–2381. CrossRef  Google Scholar  PubMed 
  12. Chai, X.J., Castanon, A.N., Ongur, D., & Whitfield-Gabrieli, S. (2012). Anticorrelations in resting state networks without global signal regression. Neuroimage, 59, 1420–1428. CrossRef  Google Scholar  PubMed 
  13. Chang, C., & Glover, G.H. (2009). Effects of model-based physiological noise correction on default mode network anti-correlations and correlations. Neuroimage, 47, 1448–1459. CrossRef  Google Scholar  PubMed 
  14. Chen, G., Chen, G., Xie, C., & Li, S.-J. (2011). Negative functional connectivity and its dependence on the shortest path length of positive network in the resting-state human brain. Brain Connectivity, 1, 195–206. CrossRef  Google Scholar  PubMed 
  15. Corbetta, M., & Shulman, G.L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3, 215–229. CrossRef  Google Scholar 
  16. Corrigan, J.D., & Bogner, J. (2007). Initial reliability and validity of the Ohio State University TBI identification method. Journal of Head Trauma Rehabilitation, 22, 318–329. CrossRef  Google Scholar 
  17. Cox, R.W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29, 162–173. CrossRef  Google Scholar 
  18. Crepeau, F., & Scherzer, P. (1993). Predictors and indicators of work status after traumatic brain injury: A meta-analysis. Neuropsychological Rehabilitation, 3, 5–35. CrossRef  Google Scholar 
  19. Delis, D.C., Kaplan, E., & Kramer, J.H. (2001). D-KEFS Executive Function System: Examiners manual. San Antonio, TX: Pearson Education, Inc. Google Scholar 
  20. Diener, E., Emmons, R.A., Larsen, R.J., & Griffin, S. (1985). The satisfaction with life scale. Journal of Personality Assessment, 49, 71–75. CrossRef  Google Scholar  PubMed 
  21. Dixon, M.L., Fox, K.C.R., & Christoff, K. (2014). A framework for understanding the relationship between externally and internally directed cognition. Neuropsychologia, 62, 321–330. CrossRef  Google Scholar  PubMed 
  22. Dritschel, B.H., Kogan, L., Burton, A., Burton, E., & Goddard, L. (1998). Everyday planning difficulties following traumatic brain injury: A role for autobiographical memory. Brain Injury, 12, 875–886. Google Scholar  PubMed 
  23. Ellamil, M., Dobson, C., Beeman, M., & Christoff, K. (2012). Evaluative and generative modes of thought during the creative process. Neuroimage, 59, 1783–1794. CrossRef  Google Scholar  PubMed 
  24. Evans, A.C., Collins, D.L., Mills, S.R., Brown, E.D., Kelly, R.L., & Peters, T.M. (1993). 3D statistical neuroanatomical models from 305 MRI volumes. In Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging (pp. 1813–1817). IEEE. doi:10.1109/NSSMIC.1993.373602 Google Scholar 
  25. Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Van Essen, D.C., & Raichle, M.E. (2005). From the cover: The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102, 9673–9678. CrossRef  Google Scholar 
  26. Fox, M.D., Zhang, D., Snyder, A.Z., & Raichle, M.E. (2009). The global signal and observed anticorrelated resting state brain networks. Journal of Neurophysiology, 101, 3270–3283. CrossRef  Google Scholar 
  27. Gerlach, K.D., Spreng, R.N., Gilmore, A.W., & Schacter, D.L. (2011). Solving future problems: Default network and executive activity associated with goal-directed mental simulations. Neuroimage, 55, 1816–1824. CrossRef  Google Scholar  PubMed 
  28. Gerlach, K.D., Spreng, R.N., Madore, K.P., & Schacter, D.L. (2014). Future planning: Default network activity couples with frontoparietal control network and reward-processing regions during process and outcome simulations. Social Cognitive and Affective Neuroscience, 9, 1942–1951. CrossRef  Google Scholar  PubMed 
  29. Ham, T.E., Bonnelle, V., Hellyer, P., Jilka, S., Robertson, I.H., Leech, R., & Sharp, D.J. (2014). The neural basis of impaired self-awareness after traumatic brain injury. Brain, 137, 586–597. CrossRef  Google Scholar  PubMed 
  30. Han, K., Mac Donald, C.L., Johnson, A.M., Barnes, Y., Wierzechowski, L., Zonies, D., & Brody, D.L. (2014). Disrupted modular organization of resting-state cortical functional connectivity in U.S. military personnel following concussive “mild” blast-related traumatic brain injury. Neuroimage, 84, 76–96. CrossRef  Google Scholar  PubMed 
  31. Hanten, G., Chapman, S.B., Gamino, J.F., Zhang, L., Benton, S.B., Stallings-Roberson, G., & Levin, H.S. (2004). Verbal selective learning after traumatic brain injury in children. Annals of Neurology, 56, 847–853. CrossRef  Google Scholar  PubMed 
  32. Hillary, F.G., Rajtmajer, S.M., Roman, C.A., Medaglia, J.D., Slocomb-Dluzen, J.E., Calhoun, V.D., & Wylie, G. R. (2014). The rich get richer: Brain injury elicits hyperconnectivity in core subnetworks. PLoS One, 9, e104021. doi:10.1371/journal.pone.0104021 CrossRef  Google Scholar  PubMed 
  33. Honey, C.J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J.P., Meuli, R., & Hagmann, P. (2009). Predicting human resting-state functional connectivity from structural connectivity. Proceedings of the National Academy of Sciences of the United States of America, 106, 2035–2040. CrossRef  Google Scholar  PubMed 
  34. Jo, H.J., Saad, Z.S., Simmons, W.K., Milbury, L.A., & Cox, R.W. (2010). Mapping sources of correlation in resting state FMRI, with artifact detection and removal. Neuroimage, 52, 571–582. CrossRef  Google Scholar  PubMed 
  35. Joel, S.E., Caffo, B.S., van Zijl, P.C.M., & Pekar, J.J. (2011). On the relationship between seed-based and ICA-based measures of functional connectivity. Magnetic Resonance in Medicine, 66, 644–657. CrossRef  Google Scholar  PubMed 
  36. Johnstone, T., Walsh, K.S.O., Greischar, L.L., Alexander, A.L., Fox, A.S., Davidson, R.J., & Oakes, T.R. (2006). Motion correction and the use of motion covariates in multiple-subject fMRI analysis. Human Brain Mapping, 27, 779–788. CrossRef  Google Scholar 
  37. Kelly, A.M.C., Uddin, L.Q., Biswal, B.B., Castellanos, F.X., & Milham, M.P. (2008). Competition between functional brain networks mediates behavioral variability. Neuroimage, 39, 527–537. CrossRef  Google Scholar  PubMed 
  38. Kinnunen, K.M., Greenwood, R., Powell, J.H., Leech, R., Hawkins, P.C., Bonnelle, V., & Sharp, D.J. (2010). White matter damage and cognitive impairment after traumatic brain injury. Brain, 134, 449–463. CrossRef  Google Scholar  PubMed 
  39. Krawczyk, D.C., de la Plata, C.M., Schauer, G.F., Vas, A.K., Keebler, M., Tuthill, S., & Chapman, S.B. (2013). Evaluating the effectiveness of reasoning training in military and civilian chronic traumatic brain injury patients: Study protocol. Trials, 14, 29. doi:10.1186/1745-6215-14-29 CrossRef  Google Scholar  PubMed 
  40. Kumar, S., Rao, S.L., Chandramouli, B.A., & Pillai, S.V. (2009). Reduction of functional brain connectivity in mild traumatic brain injury during working memory. Journal of Neurotrauma, 26, 665–675. CrossRef  Google Scholar  PubMed 
  41. Latora, V., & Marchiori, M. (2001). Efficient behavior of small-world networks. Physical Review Letters, 87, 198701. CrossRef  Google Scholar  PubMed 
  42. Levine, B., Robertson, I.H., Clare, L., Carter, G., Hong, J., Wilson, B.A., & Stuss, D.T. (2000). Rehabilitation of executive functioning: An experimental-clinical validation of goal management training. Journal of the International Neuropsychological Society, 6, 299–312. CrossRef  Google Scholar  PubMed 
  43. Levine, B., Stuss, D.T., Milberg, W.P., Alexander, M.P., Schwartz, M., & Macdonald, R. (1998). The effects of focal and diffuse brain damage on strategy application: Evidence from focal lesions, traumatic brain injury and normal aging. Journal of the International Neuropsychological Society, 4, 247–264. Google Scholar  PubMed 
  44. Mac Donald, C.L., Johnson, A.M., Cooper, D., Nelson, E.C., Werner, N.J., Shimony, J.S., & Brody, D.L. (2011). Detection of blast-related traumatic brain injury in U.S. military personnel. New England Journal of Medicine, 364, 2091–2100. CrossRef  Google Scholar  PubMed 
  45. Malec, J.F., Testa, J.A., Rush, B.K., Brown, A.W., & Moessner, A.M. (2007). Self-assessment of impairment, impaired self-awareness, and depression after traumatic brain injury. Journal of Head Trauma Rehabilitation, 22, 156–166. CrossRef  Google Scholar  PubMed 
  46. Marquez de la Plata, C.D., Garces, J., Shokri Kojori, E., Grinnan, J., Krishnan, K., Pidikiti, R., & Diaz-Arrastia, R. (2011). Deficits in functional connectivity of hippocampal and frontal lobe circuits after traumatic axonal injury. Archives of Neurology, 68, 74–84. CrossRef  Google Scholar  PubMed 
  47. Mateer, C.A., Sohlberg, M.M., & Crinean, J. (1987). Focus on clinical research: Perceptions of memory function in individuals with closed-head injury. Journal of Head Trauma Rehabilitation, 2, 74–84. CrossRef  Google Scholar 
  48. Mayer, A.R., Mannell, M.V., Ling, J., Gasparovic, C., & Yeo, R.A. (2011). Functional connectivity in mild traumatic brain injury. Human Brain Mapping, 32, 1825–1835. CrossRef  Google Scholar  PubMed 
  49. Messe, A., Caplain, S., Paradot, G., Garrigue, D., Mineo, J.-F., Soto Ares, G., & Lehericy, S. (2011). Diffusion tensor imaging and white matter lesions at the subacute stage in mild traumatic brain injury with persistent neurobehavioral impairment. Human Brain Mapping, 32, 999–1011. CrossRef  Google Scholar  PubMed 
  50. Murphy, K., Birn, R.M., Handwerker, D.A., Jones, T.B., & Bandettini, P.A. (2009). The impact of global signal regression on resting state correlations: Are anti-correlated networks introduced? Neuroimage, 44, 893–905. CrossRef  Google Scholar  PubMed 
  51. Nakamura, T., Hillary, F.G., & Biswal, B.B. (2009). Resting network plasticity following brain injury. PLoS One, 4, e8220. doi:10.1371/journal.pone.0008220 CrossRef  Google Scholar  PubMed 
  52. Niogi, S.N., & Mukherjee, P. (2010). Diffusion tensor imaging of mild traumatic brain injury. Journal of Head Trauma Rehabilitation, 25, 241–255. CrossRef  Google Scholar  PubMed 
  53. Niogi, S.N., Mukherjee, P., Ghajar, J., Johnson, C., Kolster, R.A., Sarkar, R., & McCandliss, B.D. (2008). Extent of microstructural white matter injury in postconcussive syndrome correlates with impaired cognitive reaction time: A 3T diffusion tensor imaging study of mild traumatic brain injury. AJNR American Journal of Neuroradiology, 29, 967–973. CrossRef  Google Scholar  PubMed 
  54. O’Reilly, J.X., Croxson, P.L., Jbabdi, S., Sallet, J., Noonan, M.P., Mars, R.B., & Baxter, M.G. (2013). Causal effect of disconnection lesions on interhemispheric functional connectivity in rhesus monkeys. Proceedings of the National Academy of Sciences of the United States of America, 110, 13982–13987. CrossRef  Google Scholar  PubMed 
  55. Pandit, A.S., Expert, P., Lambiotte, R., Bonnelle, V., Leech, R., Turkheimer, F.E., & Sharp, D.J. (2013). Traumatic brain injury impairs small-world topology. Neurology, 80, 1826–1833. CrossRef  Google Scholar  PubMed 
  56. Power, J.D., Barnes, K.A., Snyder, A.Z., Schlaggar, B.L., & Petersen, S.E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage, 59, 2142–2154. CrossRef  Google Scholar  PubMed 
  57. Power, J.D., Cohen, A.L., Nelson, S.M., Wig, G.S., Barnes, K.A., Church, J.A., & Petersen, S.E. (2011). Functional network organization of the human brain. Neuron, 72, 665–678. CrossRef  Google Scholar  PubMed 
  58. Power, J.D., Mitra, A., Laumann, T.O., Snyder, A.Z., Schlaggar, B.L., & Petersen, S.E. (2014). Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage, 84, 320–341. CrossRef  Google Scholar  PubMed 
  59. Raichle, M.E., MacLeod, A.M., Snyder, A.Z., Powers, W.J., Gusnard, D.A., & Shulman, G.L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98, 676–682. CrossRef  Google Scholar  PubMed 
  60. Rigon, A., Duff, M.C., McAuley, E., Kramer, A., & Voss, M.W. (2015). “Is traumatic brain injury associated with reduced inter-hemispheric functional connectivity? A study of large-scale resting state networks following traumatic brain injury.” Journal of Neurotrauma, doi:10.1089/neu.2014.3847 [Epub ahead of print]. Google Scholar 
  61. Robertson, I.H., Manly, T., Andrade, J., Baddeley, B.T., & Yiend, J. (1997). ‘Oops!’: Performance correlates of everyday attentional failures in traumatic brain injured and normal subjects. Neuropsychologia, 35, 747–758. CrossRef  Google Scholar 
  62. Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. Neuroimage, 52, 1059–1069. CrossRef  Google Scholar  PubMed 
  63. Saad, Z.S., Gotts, S.J., Murphy, K., Chen, G., Jo, H.J., Martin, A., & Cox, R.W. (2012). Trouble at rest: How correlation patterns and group differences become distorted after global signal regression. Brain Connectivity, 2, 25–32. CrossRef  Google Scholar  PubMed 
  64. Satterthwaite, T.D., Wolf, D.H., Loughead, J., Ruparel, K., Elliott, M.A., Hakonarson, H., & Gur, R.E. (2012). Impact of in-scanner head motion on multiple measures of functional connectivity: Relevance for studies of neurodevelopment in youth. Neuroimage, 60, 623–632. CrossRef  Google Scholar 
  65. Schönberger, M., Ponsford, J., Reutens, D., Beare, R., Clarke, D., & O’Sullivan, R. (2011). The relationship between mood disorders and MRI findings following traumatic brain injury. Brain Injury, 25, 543–550. CrossRef  Google Scholar  PubMed 
  66. Seeley, W.W., Menon, V., Schatzberg, A.F., Keller, J., Glover, G.H., Kenna, H., & Greicius, M.D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. Journal of Neuroscience, 27, 2349–2356. CrossRef  Google Scholar  PubMed 
  67. Shallice, T. (1982). Specific impairments of planning. Philosophical Transactions of the Royal Society B: Biological Sciences, 298, 199–209. CrossRef  Google Scholar  PubMed 
  68. Sharp, D.J., Beckmann, C.F., Greenwood, R., Kinnunen, K.M., Bonnelle, V., De Boissezon, X., & Leech, R. (2011). Default mode network functional and structural connectivity after traumatic brain injury. Brain, 134, 2233–2247. CrossRef  Google Scholar 
  69. Sharp, D.J., Scott, G., & Leech, R. (2014). Network dysfunction after traumatic brain injury. Nature Reviews Neurology, 10, 156–166. CrossRef  Google Scholar 
  70. Singh, M., Jeong, J., Hwang, D., Sungkarat, W., & Gruen, P. (2010). Novel diffusion tensor imaging methodology to detect and quantify injured regions and affected brain pathways in traumatic brain injury. Magnetic Resonance Imaging, 28, 22–40. CrossRef  Google Scholar  PubMed 
  71. Slobounov, S.M., Gay, M., Zhang, K., Johnson, B., Pennell, D., Sebastianelli, W., & Hallett, M. (2011). Alteration of brain functional network at rest and in response to YMCA physical stress test in concussed athletes: RsFMRI study. Neuroimage, 55, 1716–1727. CrossRef  Google Scholar  PubMed 
  72. Smallwood, J., Brown, K., Baird, B., & Schooler, J.W. (2012). Cooperation between the default mode network and the frontal–parietal network in the production of an internal train of thought. Brain Research, 1428, 60–70. CrossRef  Google Scholar 
  73. Smith, D.H., Meaney, D.F., & Shull, W.H. (2003). Diffuse axonal injury in head trauma. Journal Head Trauma Rehabilitation, 18, 307–316. CrossRef  Google Scholar  PubMed 
  74. Smits, M., Houston, G.C., Dippel, D.W.J., Wielopolski, P.A., Vernooij, M.W., Koudstaal, P.J., & van der Lugt, A. (2011). Microstructural brain injury in post-concussion syndrome after minor head injury. Neuroradiology, 53, 553–563. CrossRef  Google Scholar  PubMed 
  75. Sours, C., Rosenberg, J., Kane, R., Roys, S., Zhuo, J., Shanmuganathan, K., & Gullapalli, R.P. (2015). Associations between interhemispheric functional connectivity and the Automated Neuropsychological Assessment Metrics (ANAM) in civilian mild TBI. Brain Imaging and Behavior, 9, 190–203. CrossRef  Google Scholar  PubMed 
  76. Sours, C., Zhuo, J., Janowich, J., Aarabi, B., Shanmuganathan, K., & Gullapalli, R.P. (2013). Default mode network interference in mild traumatic brain injury – A pilot resting state study. Brain Research, 1537, 201–215. CrossRef  Google Scholar  PubMed 
  77. Spreng, R.N., Sepulcre, J., Turner, G.R., Stevens, W.D., & Schacter, D.L. (2013). Intrinsic architecture underlying the relations among the default, dorsal Attention, and frontoparietal control networks of the human brain. Journal of Cognitive Neuroscience, 25, 74–86. CrossRef  Google Scholar  PubMed 
  78. Spreng, R.N., Stevens, W.D., Chamberlain, J.P., Gilmore, A.W., & Schacter, D.L. (2010). Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition. Neuroimage, 53, 303–317. CrossRef  Google Scholar  PubMed 
  79. Tang, L., Ge, Y., Sodickson, D.K., Miles, L., Zhou, Y., Reaume, J., & Grossman, R.I. (2011). Thalamic resting-state functional networks: Disruption in patients with mild traumatic brain injury. Radiology, 260, 831–840. CrossRef  Google Scholar  PubMed 
  80. Teasdale, G., & Jennett, B. (1974). Assessment of coma and impaired consciousness. A practical scale. Lancet, 2, 81–84. CrossRef  Google Scholar  PubMed 
  81. van Dijk, K.R.A., Hedden, T., Venkataraman, A., Evans, K.C., Lazar, S.W., & Buckner, R.L. (2010). Intrinsic functional connectivity as a tool for human connectomics: Theory, properties, and optimization. Journal of Neurophysiology, 103, 297–321. CrossRef  Google Scholar 
  82. van Dijk, K.R.A., Sabuncu, M.R., & Buckner, R.L. (2012). The influence of head motion on intrinsic functional connectivity MRI. Neuroimage, 59, 431–438. CrossRef  Google Scholar  PubMed 
  83. Vincent, J.L., Kahn, I., Snyder, A.Z., Raichle, M.E., & Buckner, R.L. (2008). Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. Journal of Neurophysiology, 100, 3328–3342. CrossRef  Google Scholar  PubMed 
  84. Weathers, F., Litz, B., Herman, D., Huska, J., & Keane, T. (1993). The PTSD Checklist (PCL): Reliability, Validity, and Diagnostic Utility. In Annual Meeting of the International Society of Traumatic Stress Studies. San Antonio, TX: International Society for Traumatic Stress Studies. Google Scholar 
  85. Wechsler, D. (1997). Wechsler Adult Intelligence Scale – Third Edition (WAIS–III). San Antonio, TX: Pearson Education, Inc. Google Scholar 
  86. Wechsler, D. (1999). Wechsler Abbreviated Scale of Intelligence (WASI). San Antonio, TX: Pearson Education, Inc. Google Scholar 
  87. Wechsler, D. (2001). Wechsler test of adult reading. San Antonio, TX: The Psychological Corporation. Google Scholar 
  88. Wechsler, D. (2008). Wechsler Memory Scale – Fourth Edition (WMS-IV). San Antonio, TX: Pearson Education, Inc. Google Scholar 
  89. Whyte, J., Polansky, M., Cavallucci, C., Fleming, M., Lhulier, J., & Coslett, H.B. (1996). Inattentive behavior after traumatic brain injury. Journal of the International Neuropsychological Society, 2, 274–281. CrossRef  Google Scholar  PubMed 
  90. Wilson, J.T.L., Pettigrew, L.E.L., & Teasdale, G.M. (1998). Structured interviews for the Glasgow outcome scale and the extended Glasgow outcome scale: Guidelines for their use. Journal of Neurotrauma, 15, 573–585. CrossRef  Google Scholar 
  91. Xia, M., Wang, J., & He, Y. (2013). BrainNet viewer: A network visualization tool for human brain connectomics. PLoS One, 8, e68910. doi:10.1371/journal.pone.0068910 CrossRef  Google Scholar  PubMed 
  92. Zalesky, A., Fornito, A., & Bullmore, E.T. (2010). Network-based statistic: Identifying differences in brain networks. Neuroimage, 53, 1197–1207. CrossRef  Google Scholar  PubMed 
  93. Zgaljardic, D.J., Seale, G.S., Schaefer, L.A., Temple, R.O., Foreman, J., & Elliott, T.R. (2015). Psychiatric disease and post-acute traumatic brain injury. Journal of Neurotrauma, 32, 1911–1925. CrossRef  Google Scholar  PubMed