3 CE Credits. Four Critical Reviews (JINS 23:3, 2017)

apa-logo_white_screenThe International Neuropsychological Society is approved by the American Psychological Association to sponsor continuing education for psychologists. The International Neuropsychological Society maintains responsibility for this program and its content.
Educational Objectives
  1. Describe the concept of cognitive reserve in relation to post-stroke cognitive impairments
  2. Describe the effects of carrying an APOE e4 allele in mid-adulthood
  3. Describe the difference between content-specific and content-free cues used within rehabilitation approaches that support prospective memory
  4. Discuss social cognitive deficits associated with multiple sclerosis and the brain structures involved

Course Information
Target Audience:Intermediate
Availability:Date Available: 2017-03-16
You may obtain CE for this JINS package at any time.
Offered for CEYes
CostMembers $30
Non-Members $45
Refund PolicyThis JINS package is not eligible for refunds
CE Credits3.0



Individual Titles, Authors, and Articles:

Effect of Formal Education on Vascular Cognitive Impairment after Stroke: A Meta-analysis and Study in Young-Stroke Patients
Author(s)
  • Roy P.C. Kessels | Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands, Department of Medical Psychology, Radboud University Medical Center, Nijmegen, the Netherlands, Vincent van Gogh Institute for Psychiatry, Venray, the Netherlands
  • Willem Sake Eikelboom | Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
  • Pauline Schaapsmeerders | Department of Neurology, Radboud University Medical Center, Nijmegen, the Netherlands
  • Noortje A.M. Maaijwee | Department of Neurology, Radboud University Medical Center, Nijmegen, the Netherlands
  • Renate M. Arntz | Department of Neurology, Radboud University Medical Center, Nijmegen, the Netherlands
  • Ewoud J. van Dijk | Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands, Department of Neurology, Radboud University Medical Center, Nijmegen, the Netherlands
  • Frank-Erik de Leeuw | Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands, Department of Neurology, Radboud University Medical Center, Nijmegen, the Netherlands

Correspondence
E-mail address | r.kessels@donders.ru.nl

Disclosures
None of the authors have any conflicts of interest to report.

Abstract
Objectives:

The extent of vascular cognitive impairment (VCI) after stroke varies greatly across individuals, even when the same amount of brain damage is present. Education level is a potentially protective factor explaining these differences, but results on its effects on VCI are inconclusive.

Methods:

First, we performed a meta-analysis on formal education and VCI, identifying 21 studies (N=7770). Second, we examined the effect of formal education on VCI in young-stroke patients who were cognitively assessed on average 11.0 (SD=8.2) years post-stroke (the FUTURE study cohort). The total sample consisted of 277 young-stroke patients with a mean age at follow-up 50.9 (SD=10.3). Age and education-adjusted expected scores were computed using 146 matched stroke-free controls.

Results:

The meta-analysis showed an overall effect size (z') of 0.25 (95% confidence interval [0.18–0.31]), indicating that formal education level had a small to medium effect on VCI. Analyses of the FUTURE data showed that the effect of education on post-stroke executive dysfunction was mediated by age (β age −0.015;p<.05). Below-average performance in the attention domain was more frequent for low-education patients (χ2(2)=9.8;p<.05).

Conclusions:

While education level was found to be related to post-stroke VCI in previous research, the effects were small. Further analysis in a large stroke cohort showed that these education effects were fully mediated by age, even in relatively young stroke patients. Education level in and of itself does not appear to be a valid indicator of cognitive reserve. Multi-indicator methods may be more valid, but have not been studied in relation to VCI. (JINS, 2017,23, 223–238)

Bibliography
  1. Studies labeled with * were included in the meta-analysis. Google Scholar 
  2. * Alladi, S., Bak, T.H., Mekala, S., Rajan, A., Chaudhuri, J.R., Mioshi, E., & Kaul, S. (2016). Impact of bilingualism on cognitive outcome after stroke. Stroke, 47, 258–261. doi: 10.1161/STROKEAHA.115.010418 CrossRef  Google Scholar  PubMed 
  3. * Akinyemi, R.O., Allan, L., Owolabi, M.O., Akinyemi, J.O., Ogbole, G., Ajani, A., & Kalaria, R.N. (2014). Profile and determinants of vascular cognitive impairment in African stroke survivors: The CogFAST Nigeria Study. Journal of the Neurological Sciences, 346, 241–249. doi: 10.1016/j.jns.2014.08.042 CrossRef  Google Scholar  PubMed 
  4. Barulli, D., & Stern, Y. (2013). Efficiency, capacity, compensation, maintenance, plasticity: Emerging concepts in cognitive reserve. Trends in Cognitive Sciences, 17, 502–509. doi: 10.1016/j.tics.2013.08.012 CrossRef  Google Scholar  PubMed 
  5. Beasley, T.M., & Schumacker, R.E. (1995). Multiple regression approach to analyzing contingency tables: Post hoc and planned comparison procedures. The Journal of Experimental Education, 64(1), 79–93. doi: 10.1080/00220973.1995.9943797 CrossRef  Google Scholar 
  6. * Blanco-Rojas, L., Arboix, A., Canovas, D., Grau-Olivares, M., Morera, J.C., & Parra, O. (2013). Cognitive profile in patients with a first-ever lacunar infarct with and without silent lacunes: A comparative study. BMC Neurology, 13, 203. doi: 10.1186/1471-2377-13-203 CrossRef  Google Scholar  PubMed 
  7. Bondi, M.W., Edmonds, E.C., Jak, A.J., Clark, L.R., Delano-Wood, L., McDonald, C.R., & Salmon, D.P. (2014). Neuropsychological criteria for mild cognitive impairment improves diagnostic precision, biomarker associations, and progression rates. Journal of Alzheimer’s Disease, 42, 275–289. doi: 10.3233/JAD-140276 Google Scholar  PubMed 
  8. Brott, T., Adams, H.P. Jr., Olinger, C.P., Marler, J.R., Barsan, W.G., Biller, J., & Walker, M. (1989). Measurements of acute cerebral infarction: A clinical examination scale. Stroke, 20, 864–870. doi: 10.1167/01.STR.20.7.864 CrossRef  Google Scholar  PubMed 
  9. * Chaudhari, T.S., Verma, R., Garg, R., Singh, M., Malhotra, H., & Sharma, P. (2014). Clinico- radiological predictors of vascular cognitive impairment (VCI) in patients with stroke: A prospective observational study. Journal of the Neurological Science, 340, 150–158. doi: 10.1016/j.jns.2014.03.018 0022-510X CrossRef  Google Scholar  PubMed 
  10. Clark-Carter, D. (2010). Quantitative psychological research: A student’s handbook(3rd ed.). Hove, UK: Psychology Press. Google Scholar 
  11. Cohen, J. (1992). A power primer. Psychological Bulletin, 112, 155–159. doi: 10.1037//0033-2909.112.1.155 CrossRef  Google Scholar  PubMed 
  12. De Groot, J.C., de Leeuw, F.E., Oudkerk, M., van Gijn, J., Hofman, A., Jolles, J., & Breteler, M.M.B. (2000). Cerebral white matter lesions and cognitive function: The Rotterdam Scan Study. Annals of Neurology, 47, 145–151. doi: 10.1002/1531-8249(200002)47:2<145::AID-ANA3>3.0.CO;2-P3.0.CO;2-P>CrossRef Google Scholar  PubMed 
  13. Demeyere, N., Riddoch, M.J., Slavkova, E.D., Jones, K., Reckless, I., Mathieson, P., & Humphreys, G.W. (2016). Domain-specific versus generalized cognitive screening in acute stroke. Journal of Neurology, 263, 306–315. doi: 10.1007/s00415-015-7964-4 CrossRef  Google Scholar  PubMed 
  14. Desmond, D.W. (2004). The neuropsychology of vascular cognitive impairment: Is there a specific cognitive deficit? Journal of the Neurological Sciences, 226, 3–7. doi: 10.1016/j.jns.2004.09.002 CrossRef  Google Scholar 
  15. Duits, A., & Kessels, R. (2014). Schatten van het premorbide functioneren. pp. 173–186. In M. Hendriks, R. Kessels, M. Gorissen, B. Schmand & A. Duits (Eds.), Neuropsychologische diagnostiek: De klinische praktijk [Neuropsychological assessment: Clinical practice] Amsterdam: Boom. Google Scholar 
  16. Fisher, R.A. (1915). Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika, 10, 507–521. doi: 10.2307/2331838 Google Scholar 
  17. Folstein, M., Folstein, S.E., & McHugh, P.R. (1975). “Mini-Mental State”: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189–198. CrossRef  Google Scholar  PubMed 
  18. Goldin, C. (1998). America’s graduation from high school: The evolution and spread of secondary schooling in the twentieth century. Journal of Economic History, 58, 345–374. CrossRef  Google Scholar 
  19. Gorelick, P.B., Scuteri, A., Black, S.E., Decarli, C., Greenberg, S.M., & Iadecola, C., . . . American Heart Association Stroke Council, Council on Epidemiology and Prevention, Council on Cardiovascular Nursing, Council on Cardiovascular Radiology and Intervention, and Council on Cardiovascular Surgery and Anesthesia. (2011). Vascular contributions to cognitive impairment and dementia: A statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke, 42, 2672–2713. doi: 10.1161/STR.0b013e3182299496 CrossRef  Google Scholar  PubMed 
  20. Harrison, S.L., Sajjad, A., Bramer, W.M., Ikram, M.A., Tiemeier, H., & Stephan, B.C.. Exploring strategies to operationalize cognitive reserve: A systematic review of reviews. Journal of Clinical and Experimental Neuropsychology, 37, 253–264. doi: 10.1080/13803395.2014.1002759 CrossRef  Google Scholar  PubMed 
  21. Hedges, L.V., & Olkin, I. (1985). Statistical methods for meta-analysis. Orlando, FL: Academic Press. Google Scholar  PubMed 
  22. Hindle, J.V., Martyr, A., & Clare, L. (2014). Cognitive reserve in Parkinson’s disease: A systematic review and meta-analysis. Parkinsonism and Related Disorders, 20, 1–7. CrossRef  Google Scholar  PubMed 
  23. Hochstenbach, J.B., Den Otter, R.D., & Mulder, T.W. (2003). Cognitive recovery after stroke: A 2-year follow-up. Archives of Physical Medicine and Rehabilitation, 84, 1499–1504. doi: 10.1016/S0003-9993(03)00370-8 CrossRef  Google Scholar  PubMed 
  24. Hochstenbach, J., Mulder, T., Van Limbeek, J., Donders, R., & Schoonderwaldt, H. (1998). Cognitive decline following stroke: A comprehensive study of cognitive decline following stroke. Journal of Clinical and Experimental Neuropsychology, 20, 503–517. doi: 10.1076/jcen.20.4.503.1471 Google Scholar  PubMed 
  25. * Horstmann, S., Rizos, T., Rauch, G., Arden, C., & Veltkamp, R. (2014). Feasibility of the Montreal Cognitive Assessment in acute stroke patients. European Journal of Neurology, 21, 1387–1393. doi: 10.1111/ene.12505 CrossRef  Google Scholar  PubMed 
  26. Houx, P.J., Jolles, J., & Vreeling, F.W. (1993). Stroop interference: Aging effects assessed with the Stroop Color-Word Test. Experimental Aging Research, 19, 209–224. CrossRef  Google Scholar  PubMed 
  27. * Huang, K.L., Chang, T.Y., Chang, C.H., Liu, H.L., Chang, Y.J., Liu, C.H., & Ho, M.Y. (2013). Relationships between ophthalmic artery flow direction and cognitive performance in patients with unilateral carotid artery stenosis. Journal of the Neurological Sciences, 336, 184–190. doi: 10.1016/j.jns.2013.10.037 CrossRef  Google Scholar 
  28. * Jacova, C., Pearce, L.A., Costello, R., McClure, L.A., Holliday, S.L., Hart, R.G., & Benavente, O.R. (2012). Cognitive impairment in lacunar strokes: The SPS3 trial. Annals of Neurology, 72, 351–362. doi: 10.1002/ana.23733 CrossRef  Google Scholar  PubMed 
  29. * Jacova, C., Pearce, L.A., Roldan, A.M., Arauz, A., Tapia, J., Costello, R., & Benavente, O.R. (2015). Cognitive performance following lacunar stroke in Spanish-speaking patients: Results from the SPS3 trial. International Journal of Stroke, 10, 519–528. doi: 10.1111/ijs.12511 CrossRef  Google Scholar  PubMed 
  30. * Jacquin, A., Binquet, C., Rouaud, O., Graule-Petot, A., Daubail, B., Osseby, G.V., & Béjot, Y. (2014). Post-stroke cognitive impairment: High prevalence and determining factors in a cohort of mild stroke. Journal of Alzheimer’s Disease, 40, 1029–1038. doi: 10.3233/JAD-131580 Google Scholar 
  31. Jokinen, H., Melkas, S., Ylikoski, R., Pohjasvaara, T., Kaste, M., Erkinjuntti, T., & Hietanen, M. (2015). Post-stroke cognitive impairment is common even after successful clinical recovery. European Journal of Neurology, 22, 1288–1294. doi: 10.1111/ene.12743 CrossRef  Google Scholar  PubMed 
  32. Jones, R.N., Manly, J., Glymour, M.M., Rentz, D.M., Jefferson, A.L., & Stern, Y. (2011). Conceptual and measurement challenges in research on cognitive reserve. Journal of the International Neuropsychological Society, 17, 593–601. doi: 10.1017/S1355617710001748 CrossRef  Google Scholar  PubMed 
  33. Khandaker, G.M., Barnett, J.H., White, I.R., & Jones, P.B. (2011). A quantitative meta-analysis of population-based studies of premorbid intelligence and schizophrenia. Schizophrenia Research, 132, 220–227. doi: 10.1016/j.schres.2011.06.017 CrossRef  Google Scholar 
  34. Knoflach, M., Matosevic, B., Rücker, M., Furtner, M., Mair, A., Wille, G., & Willeit, J. (2012). Functional recovery after ischemic stroke–a matter of age: Data from the Austrian Stroke Unit Registry. Neurology, 78, 279–285. doi: 10.1212/WNL.0b013e31824367ab CrossRef  Google Scholar  PubMed 
  35. León, I., García-García, J., & Roldán-Tapia, L. (2014). Estimating cognitive reserve in healthy adults using the cognitive reserve scale. PLOS One, 9(7), e102632. doi: 10.1371/journal.pone.0102632 CrossRef  Google Scholar  PubMed 
  36. Lezak, M.D., Howieson, D.B., Bigler, E.D., & Tranel, D. (2012). Neuropsychological assessment(5th ed.). New York: Oxford University Press. Google Scholar  PubMed 
  37. Lipsey, M.W., & Wilson, D.B. (2000). Practical meta-analysis. Thousand Oaks, CA: Sage. Google Scholar  PubMed 
  38. MacKinnon, D.P., Lockwood, C.M., & Williams, J. (2004). Confidence limits for the indirect effect: Distribution of the product and resampling methods. Multivariate Behavioral Research, 39, 99–128. doi: 10.1207/s15327906mbr3901_4 CrossRef  Google Scholar  PubMed 
  39. Mahoney, F.I., & Barthel, D.W. (1965). Functional evaluation: The Barthel Index. Maryland State Medical Journal, 14, 61–65. Google Scholar  PubMed 
  40. Mahurin, R.K., & Cooke, N. (1996). Verbal Series Attention Test: Clinical utility in the assessment of dementia. Clinical Neuropsychologist, 10, 43–53. CrossRef  Google Scholar 
  41. Martins Da Silva, A., Cavaco, S., Moreira, I., Bettencourt, A., Santos, E., Pinto, C., & Montalban, X. (2015). Cognitive reserve in multiple sclerosis: Protective effects of education. Multiple Sclerosis, 21, 1312–1321. doi: 10.1177/1352458515581874 CrossRef  Google Scholar  PubMed 
  42. Mathias, J.L., & Wheaton, P. (2015). Contribution of brain or biological reserve and cognitive or neural reserve to outcome after TBI: A meta-analysis (prior to 2015). Neuroscience and Biobehavioral Reviews, 55, 573–593. doi: 10.1016/j.neubiorev.2015.06.001 CrossRef  Google Scholar 
  43. McLaren, M.E., Szymkowicz, S.M., Kirton, J.W., & Dotson, V.M. (2015). Impact of education on memory deficits in subclinical depression. Archives of Clinical Neuropsychology, 30, 387–393. doi: 10.1093/arclin/acv038 CrossRef  Google Scholar  PubMed 
  44. Meng, X., & D’Arcy, C. (2012). Education and dementia in the context of the cognitive reserve hypothesis: A systematic review with meta-analyses and qualitative analyses. PLOS One, 7(6), e38268. doi: 10.1371/journal.pone.0038268 CrossRef  Google Scholar  PubMed 
  45. Mirza, S.S., Portegies, M.L., Wolters, F.J., Hofman, A., Koudstaal, P.J., Tiemeier, H., & Ikram, M.A. (2016). Higher education is associated with a lower risk of dementia after a stroke or TIA: The Rotterdam Study. Neuroepidemiolog, 46, 120–127. doi: 10.1159/000443649 CrossRef  Google Scholar  PubMed 
  46. Moher, D., Liberati, A., Tetzlaff, J., & Altman, D.G., The PRISMA Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine, 6(6), e1000097. doi: 10.1371/journal.pmed1000097 CrossRef  Google Scholar  PubMed 
  47. Moller, J.T., Cluitmans, P., Rasmussen, L.S., Houx, P., Rasmussen, H., Canet, J., & Gravenstein, J.S. (1998). Long-term postoperative cognitive dysfunction in the elderly ISPOCD1 study. Lancet, 351, 857–861. doi: 10.1016/S0140-6736(97)07382-0 CrossRef  Google Scholar  PubMed 
  48. Nasreddine, Z.S., Phillips, N.A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., & Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53, 695–699. doi: 10.1111/j.1532-5415.2005.53221.x CrossRef  Google Scholar  PubMed 
  49. Ng, T.P., Feng, L., Lim, W.S., Chong, M.S., Lee, T.S., Yap, K.B., & Yap, P. (2015). Montreal Cognitive Assessment for screening mild cognitive impairment: Variations in test performance and scores by education in Singapore. Dementia and Geriatric Cognitive Disorders, 39, 176–185. doi: 10.1159/000368827 CrossRef  Google Scholar  PubMed 
  50. Nucci, M., Mapelli, D., & Mondini, S. (2012). Cognitive Reserve Index questionnaire (CRIq): A new instrument for measuring cognitive reserve. Aging: Clinical and Experimental Research, 24, 218–226. doi: 10.3275/7800 Google Scholar  PubMed 
  51. Nunnari, D., Bramanti, P., & Marino, S. (2014). Cognitive reserve in stroke and traumatic brain injury patients. Neurological Sciences, 35, 1513–1518. doi: 10.1007/s10072-014-1897-z CrossRef  Google Scholar  PubMed 
  52. Nys, G.M., Van Zandvoort, M.J.E., De Kort, P.L., Jansen, B.P.W., Kappelle, L.J., & De Haan, E.H.F. (2005). Restrictions of the Mini-Mental State Examination in acute stroke. Archives of Clinical Neuropsychology, 20, 623–629. doi: 10.1212/01.WNL.0000152984.28420.5A CrossRef  Google Scholar  PubMed 
  53. * Ojala-Oksala, J., Jonkinen, H., Kopsi, V., Lehtonen, K., Luukkonen, L., Paukkunen, A., & . . Oksala, N. (2012). Educational history is an independent predictor of cognitive deficits and long-term survival in postacute patients with mild to moderate ischemic stroke. Stroke, 43, 2931–2935. doi: 10.1161/STROKEAHA.112.667618 CrossRef  Google Scholar  PubMed 
  54. Opdebeeck, C., Martyr, A., & Clare, L. (2016). Cognitive reserve and cognitive function in healthy older people: A meta-analysis. Aging, Neuropsychology, and Cognition, 23, 40–60. doi: 10.1080/13825585.2015.1041450 CrossRef  Google Scholar  PubMed 
  55. Osterrieth, P. (1944). Le test de copie d’une figure complexe: Contribution a l’étude de la perception et de la mémoire. Archives de Psychologie, 30, 206–353. Google Scholar 
  56. Park, D.C., & Reuter-Lorenz, P. (2009). The adaptive brain: Aging and neurocognitive scaffolding. Annual Review of Psychology, 60, 173–179. doi: 10.1146/annurev.psych.59.103006.093656 CrossRef  Google Scholar  PubMed 
  57. * Pasi, M., Salvadori, E., Poggesi, A., Inzitari, D., & Pantoni, L. (2013). Factors predicting the Montreal Cognitive Assessment (MoCA) applicability and performances in a stroke unit. Journal of Neurology, 260, 1518–1526. doi: 10.1007/s00415-012-6819-5 CrossRef  Google Scholar 
  58. Pinter, D., Enzinger, C., & Fazekas, F. (2015). Cerebral small vessel disease, cognitive reserve and cognitive dysfunction. Journal of Neurology. doi: 10.1007/s00415-015-7776-6 CrossRef  Google Scholar  PubMed 
  59. Preacher, K.J., & Hayes, A.F. (2004). SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behavior Research Methods, Instruments, & Computers, 36, 717–731. doi: 10.3758/BF03206553 CrossRef  Google Scholar  PubMed 
  60. * Qu, Y., Zhuo, L., Li, N., Hu, Y., Chen, W., Zhou, Y., & Zhan, S. (2015). Prevalence of post-stroke cognitive impairment in China: A community-based, cross-sectional study. PLoS One, 10, e0122864. doi: 10.1371/journal.pone.0122864 CrossRef  Google Scholar  PubMed 
  61. * Rasquin, S.M.C., Verhey, F.R.J., Van Oostenbrugge, R.J., Lousberg, R., & Lodder, J. (2004). Demographic and CT scan features related to cognitive impairment in the first year after stroke. Journal of Neurology, Neurosurgery, and Psychiatry, 75, 1562–1567. doi: 10.1136/jnnp.2003.024190 CrossRef  Google Scholar  PubMed 
  62. Rosenberg, M.S., Adams, D.C., & Gurevitch, J. (2000). MetaWin: Statistical software for meta-analyses (Version 2.0). Sunderland, MA: Sinauer Associates. Google Scholar 
  63. Rosenthal, R. (1991). Meta-analytic procedures for social research (rev. ed.). Newbury Park, CA: Sage. CrossRef  Google Scholar 
  64. Rutten-Jacobs, L.C., Maaijwee, N.A., Arntz, R.M., Van Alebeek, M.E., Schaapsmeerders, P., Schoonderwaldt, H.C., & De Leeuw, F.-E. (2011). Risk factors and prognosis of young stroke. The FUTURE study: A prospective cohort study. Study rationale and protocol. BMC Neurology, 11, 109. doi: 10.1186/1471-2377-11-109 CrossRef  Google Scholar  PubMed 
  65. * Sachdev, P.S., Brodaty, H., Valenzuela, M.J., Lorentz, L., Psychol, M.C., & Koschera, A. (2004). Progression of cognitive impairment in stroke patients. Neurology, 63, 1618–1623. doi: 10.1212/01.WNL.0000142964.83484.DE CrossRef  Google Scholar 
  66. Schaapsmeerders, P., Maaijwee, N.A., Van Dijk, E.J., Rutten-Jacobs, L.C., Arntz, R.M., Schoonderwaldt, H.C., & De Leeuw, F.-E. (2013). Long-term cognitive impairment after first-ever ischemic stroke in young adults. Stroke, 44, 1621–1628. doi: 10.1161/STROKEAHA.111.000792 CrossRef  Google Scholar  PubMed 
  67. Schooler, C., Mulatu, M.S., & Oates, G. (1999). The continuing effects of substantively complex work on the intellectual functioning of older workers. Psychology and Aging, 14, 483–506. doi: 10.1037/0882-7974.14.3.483 CrossRef  Google Scholar 
  68. Stern, Y., Albert, S., Tang, M.X., & Tsai, W.Y. (1999). Rate of memory decline in AD is related to education and occupation: Cognitive reserve? Neurology., 53, 1942–1957. doi: 10.1212/WNL.53.9.1942 CrossRef  Google Scholar  PubMed 
  69. Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society, 8, 448–460. doi: 10.1017/S1355617702813248 CrossRef  Google Scholar  PubMed 
  70. Sternberg, S. (1969). Memory-scanning: Mental processes revealed by reaction time experiments. American Scientist, 57, 421–457. Google Scholar  PubMed 
  71. * Tang, W.K., Chan, S.S., Chiu, H.F., Ungvari, G.S., Wong, K.S., Kwok, T.C., & Ahuja, A.T. (2006). Frequency and clinical determinants of poststroke cognitive impairment in nondemented stroke patients. Journal of Geriatric Psychiatry and Neurology, 19, 65–71. doi: 10.1177/0891988706286230 CrossRef  Google Scholar  PubMed 
  72. * Tham, W., Auchus, A.P., Thong, M., Goh, M.L., Chang, H.M., Wong, M.C., & Chen, C.P.H. (2002). Progression of cognitive impairment after stroke: One year results from a longitudinal study of Singaporean stroke patients. Journal of the Neurological Sciences, 203, 49–52. doi: 10.1016/S0022-510X(02)00260-5 CrossRef  Google Scholar  PubMed 
  73. * Tu, Q., Ding, B., Yang, X., Bai, S., Tu, J.,.L.,.X., & Tang, X. (2014). The current situation on vascular cognitive impairment after ischemic stroke in Changsha. Archives of Gerontology and Geriatrics, 58, 236–247. doi: 10.1016/j.archger.2013.09.006 CrossRef  Google Scholar  PubMed 
  74. Varona, J.F., Bermejo, F., Guerra, J.M., & Molina, J.A. (2004). Long-term prognosis of ischemic stroke in young adults. Study of 272 cases. Journal of Neurology, 251, 1507–1514. doi: 10.1007/s00415-004-0583-0 CrossRef  Google Scholar  PubMed 
  75. Van der Elst, W., Van Boxtel, M.P., Van Breukelen, G.J., & Jolles, J. (2005). Rey’s verbal learning test: Normative data for 1855 healthy participants aged 24-81 years and the influence of age, sex, education, and mode of presentation. Journal of the International Neuropsychological Society, 11, 290–302. doi: 10.1017/s1355617705050344 CrossRef  Google Scholar  PubMed 
  76. Van der Elst, W., Van Boxtel, M.P., Van Breukelen, G.J., & Jolles, J. (2006). Normative data for the Animal, Profession and Letter M Naming verbal fluency tests for Dutch speaking participants and the effects of age, education, and sex. Journal of the International Neuropsychological Society, 12, 80–89. doi: 1 0.1017/s1355617706060115 CrossRef  Google Scholar 
  77. Van Hooren, S.A., Valentijn, A.M., Bosma, H., Ponds, R.W., Boxtel, M.P., & Jolles, J. (2007). Cognitive functioning in healthy older adults aged 64–81: A cohort study into the effects of age, sex, and education. Aging Neuropsychology and Cognition, 14, 40–54. doi: 10.1080/138255890969483 CrossRef  Google Scholar 
  78. Van Swieten, J.C., Koudstaal, P.J., Visser, M.C., Schouten, H.J., & van Gijn, J. (1988). Interobserver agreement for the assessment of handicap in stroke patients. Stroke, 19, 604–607. doi: 10.1161/01.STR.19.5.604 CrossRef  Google Scholar  PubMed 
  79. Vercoulen, J.H., Swanink, C.M., Fennis, J.F., Galama, J.M., van der Meer, J.W., & Bleijenberg, G. (1994). Dimensional assessment of chronic fatigue syndrome. Journal of Psychosomatic Research, 38, 383–392. doi: 10.1016/0022-3999(94)90099-X CrossRef  Google Scholar  PubMed 
  80. Verhage, F. (1964). Intelligentie en leeftijd: Onderzoek bij Nederlanders van twaalf tot zevenenzeventig jaar. Assen, The Netherlands: Van Gorcum. Google Scholar 
  81. Zahodne, L.B., Glymour, M.M., Sparks, C., Bontempo, D., Dixon, R.A., MacDonald, S.W., & Manly, J.J. (2011). Education does not slow cognitive decline with aging: 12-year evidence from the Victoria Longitudinal Study. Journal of the International Neuropsychological Society, 17, 1039–1046. doi: 10.1017/S1355617711001044 CrossRef  Google Scholar 
  82. * Zhang, Y., Zhang, Z., Yang, B., Li, Y., Zhang, Q., Qu, Q., & Zhang, B. (2012). Incidence and risk factors of cognitive impairment 3 months after first-ever stroke: A cross-sectional study of 5 geographic areas of China. Journal of Huazhong University of Science and Technology [Medical Sciences], 32, 906–911. doi: 10.1007/s11596-012-1056-9 CrossRef  Google Scholar  PubMed 
  83. * Zhang, M., Chen, M., Whang, Q., Yun, W., Zhang, Z., Yin, Q., & Zhu, W. (2013). Relationship between cerebral microbleeds and cognitive function in lacunar infarct. Journal of International Medical Research, 41, 347–355. doi: 10.1177/0300060513476448 CrossRef  Google Scholar  PubMed 
  84. * Zhou, D.H., Wang, J.Y., Li, J., Deng, J., Gao, C., & Chen, M.R.E. (2005). Frequency and risk factors of vascular cognitive impairment three months after ischemic stroke in china: The Chongqing stroke study. Neuroepidemiology, 24, 87–95. doi: 10.1159/000081055 CrossRef  Google Scholar  PubMed 
  85. Zhou, S., Zhu, J., Zhang, N., Wang, B., Li, T., Lv, X., & Wang, H. (2014). The influence of education on Chinese version of Montreal Cognitive Assessment in detecting amnesic mild cognitive impairment among older people in a Beijing rural community. Scientific World Journal, 2014, 689456. doi: 10.1155/2014/689456 CrossRef  Google Scholar 
  86. * Zieren, N., Dueringa, M., Petersb, N., Reyesc, S., Jouventc, E., Hervéc, D., & Dichgans, M. (2013). Education modifies the relation of vascular pathology to cognitive function: Cognitive reserve in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Neurobiology of Aging, 34, 400–407. doi: 10.1016/j.neurobiolaging.2012.04.01 CrossRef  Google Scholar  PubMed 
  87. Zigmond, A.S., & Snaith, R.P. (1983). The Hospital Anxiety and Depression Scale. Acta Psychiatrica Scandinavica, 67, 361–370. CrossRef  Google Scholar  PubMed 
The Elusive Nature of APOE ε4 in Mid-adulthood: Understanding the Cognitive Profile
Author(s)
  • Claire Lancaster | School of Psychology, University of Sussex, Brighton, East Sussex
  • Naji Tabet | Brighton and Sussex Medical School, Institute of Postgraduate Medicine, Brighton, East Sussex
  • Jennifer Rusted | School of Psychology, University of Sussex, Brighton, East Sussex

Correspondence
E-mail address | j.rusted@sussex.ac.uk

Disclosures
There are no conflicts of interest to disclose.

Abstract
Objectives:

The apolipoprotein E (APOE) ε4 allele is an established risk factor for dementia, yet this genetic variant is associated with a mixed cognitive profile across the lifespan. This study undertakes both a systematic and meta-analytic review of research investigatingAPOE-related differences in cognition in mid-adulthood, when detrimental effects of the allele may first be detectable.

Methods:

Thirty-six papers investigating the behavioral effects ofAPOEε4 in mid-adulthood (defined as a mean sample age between 35 and 60 years) were reviewed. In addition, the effect of carrying an ε4 allele on individual cognitive domains was assessed in separate meta-analyses.

Results:

The average effect size ofAPOEε4 status was non-significant across cognitive domains. Further consideration of genotype effects indicates preclinical effects ofAPOEε4 may be observable in memory and executive functioning.

Conclusions:

The cognitive profile ofAPOEε4 carriers at mid-age remains elusive. Although there is support for comparable performance by ε4 and non-e4 carriers in the 5thdecade, studies administering sensitive cognitive paradigms indicate a more nuanced profile of cognitive differences. Methodological issues in this field preclude strong conclusions, which future research must address, as well as considering the influence of further vulnerability factors on genotype effects. (JINS, 2016,23, 239–253)

Bibliography
  1. Alexander, D.M., Williams, L.M., Gatt, J.M., Dobson-Stone, C., Kuan, S.A., Todd, E.G., & Gordon, E. (2007). The contribution of apolipoprotein E alleles on cognitive performance and dynamic neural activity over six decades. Biological Psychology, 75(3), 229–238. doi: 10.1016/j.biopsycho.2007.03.001 CrossRef  Google Scholar  PubMed 
  2. Alzheimer’s Society. (2016). Alzheimersorguk. Retrieved 5 April, 2016, from https://www.alzheimers.org.uk/site/scripts/documents_info.php?documentID=341Google Scholar 
  3. Atzmon, G., Gabriely, I., Greiner, W., Davidson, D., Schechter, C., & Barzilai, N. (2002). Plasma HDL levels highly correlate with cognitive function in exceptional longevity. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 57(11), 712–715. doi: 10.1093/gerona/57.11.M712 CrossRef  Google Scholar  PubMed 
  4. Bender, A.R., & Raz, N. (2012). Age-related differences in memory and executive functions in healthy APOE ɛ4 carriers: The contribution of individual differences in prefrontal volumes and systolic blood pressure. Neuropsychologia, 50(5), 704–714. doi: 10.1016/j.neuropsychologia.2011.12.025 CrossRef  Google Scholar  PubMed 
  5. Blair, C.K., Folsom, A.R., Knopman, D.S., Bray, M.S., Mosley, T.H., & Boerwinkle, E. (2005). APOE genotype and cognitive decline in a middle-aged cohort. Neurology, 64(2), 268–276. doi: 10.1212/01.WNL.0000149643.91367.8A CrossRef  Google Scholar 
  6. Borenstein, M., Hedges, L., Higgins, J., & Rothstein, H. (2009). Complex data structures, Introduction to meta-analysis (pp. 215–245). West Sussex, UK: John Wiley & Sons Ltd. CrossRef  Google Scholar  PubMed 
  7. Bunce, D., Anstey, K.J., Burns, R., Christensen, H., & Easteal, S. (2011). Does possession of apolipoprotein E ɛ4 benefit cognitive function in healthy young adults? Neuropsychologia, 49(7), 1693–1697. doi: 10.1016/j.neuropsychologia.2011.02.042 CrossRef  Google Scholar  PubMed 
  8. Bunce, D., Bielak, A.A.M., Anstey, K.J., Cherbuin, N., Batterham, P.J., & Easteal, S. (2014). APOE genotype and cognitive change in young, middle-aged, and older adults living in the community. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 69(4), 379–386. doi: 10.1093/gerona/glt103 CrossRef  Google Scholar  PubMed 
  9. Bunce, D., Kivipelto, M., & Wahlin, A. (2004). Utilization of cognitive support in episodic free recall as a function of apolipoprotein E and vitamin B12 or folate among adults aged 75 years and older. Neuropsychology, 18(2), 362–370. doi: 10.1037/0894-4105.18.2.362 CrossRef  Google Scholar  PubMed 
  10. Caselli, R.J., Chen, K., Lee, W., Alexander, G.E., & Reiman, E.M. (2008). Correlating cerebral hypometabolism with future memory decline in subsequent converters to amnestic pre–mild cognitive impairment. Archives of Neurology, 65(9), 1231–1236. CrossRef  Google Scholar  PubMed 
  11. Caselli, R.J., Chen, K., Locke, D.E.C., Lee, W., Roontiva, A., Bandy, D., & Reiman, E.M. (2014). Subjective cognitive decline: Self and informant comparisons. Alzheimer’s & Dementia, 10(1), 93–98. CrossRef  Google Scholar  PubMed 
  12. Caselli, R.J., Dueck, A.C., Locke, D.E.C., Hoffman-Snyder, C.R., Woodruff, B.K., Rapcsak, S.Z., & Reiman, E.M. (2011). Longitudinal modeling of frontal cognition in APOE &epsiv;4 homozygotes, heterozygotes, and noncarriers. Neurology, 76(16), 1383–1388. doi: 10.1212/WNL.0b013e3182167147 CrossRef  Google Scholar  PubMed 
  13. Caselli, R.J., Dueck, A.C., Osborne, D., Sabbagh, M.N., Connor, D.J., Ahern, G.L., & Reiman, E.M. (2009). Longitudinal modeling of age-related memory decline and the APOE epsilon4 effect. The New England Journal of Medicine, 361, 255–263. doi: 10.1016/S0084-3954(09)79603-4 CrossRef  Google Scholar  PubMed 
  14. Caselli, R.J., Graff–Radford, N.R., Reiman, E.M., Weaver, A., Osborne, D., Lucas, J., & Thibodeau, S.N. (1999). Preclinical memory decline in cognitively normal apolipoprotein E–ε4 homozygotes. Neurology, 53(1), 201. CrossRef  Google Scholar  PubMed 
  15. Chen, C.-J., Chen, C.-C., Wu, D., Chi, N.-F., Chen, P.-C., Liao, Y.-P., & Hu, C.-J. (2013). Effects of the apolipoprotein E ε4 allele on functional MRI during n-back working memory tasks in healthy middle-aged adults. AJNR American Journal of Neuroradiology, 34(6), 1197–1202. doi: 10.3174/ajnr.A3369 CrossRef  Google Scholar  PubMed 
  16. Corder, E.H., Saunders, A.M., Strittmatter, W.J., Schmechel, D.E., Gaskell, P.C., Small, G., & Pericak-Vance, M. (1993). Gene does of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science, 261(5123), 921–923. CrossRef  Google Scholar  PubMed 
  17. DeCoster, J. (2009). Meta-analysis notes. Retrieved 07/28/2016 from http://www.stat-help.com/notes.htmlGoogle Scholar 
  18. Deeny, S.P., Poeppel, D., Zimmerman, J.B., Roth, S.M., Brandauer, J., Witkowski, S., & Brandt, J. (2008). Exercise, APOE, and working memory: MEG and behavioral evidence for benefit of exercise in epsilon4 carriers. Biological Psychology, 78(2), 179–187. CrossRef  Google Scholar  PubMed 
  19. Donix, M., Burggren, A.C., Suthana, N.A., Siddarth, P., Ekstrom, A.D., Krupa, A.K., & Bookheimer, S.Y. (2010). Family history of Alzheimer’s disease and hippocampal structure in healthy people. American Journal of Psychiatry, 167(11), 1399–1406. doi: 10.1176/appi.ajp.2010.09111575 CrossRef  Google Scholar  PubMed 
  20. Evans, S., Dowell, N.G., Tabet, N., Tofts, P.S., King, S.L., Gray, M., & Rusted, J.M. (2013). Nicotine effects on attentional reorienting in mid-age adults, and interactions with apolipoprotein E status. Journal of Psychopharmacology (Oxford, England), 27(11), 1007–1014. doi: 10.1177/0269881113499828 CrossRef  Google Scholar  PubMed 
  21. Evans, S., Dowell, N.G., Tabet, N., Tofts, P.S., King, S.L., & Rusted, J.M. (2014). Cognitive and neural signatures of the APOE Ε4 allele in mid-aged adults. Neurobiology of Aging, 35(7), 1615–1623. doi: 10.1016/j.neurobiolaging.2014.01.145 CrossRef  Google Scholar 
  22. Farrer, L.A., Cupples, L.A., Haines, J.L., Hyman, B., Kukull, W.A., Mayeux, R., & van Duijn, C.M. (1997). Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA, 278(16), 1349–1356. doi: 10.1001/jama.1997.03550160069041 CrossRef  Google Scholar  PubMed 
  23. Flory, J.D., Manuck, S.B., Ferrell, R.E., Ryan, C.M., & Muldoon, M.F. (2000). Memory performance and the apolipoprotein E polymorphism in a community sample of middle-aged adults. American Journal of Medical Genetics, 96(6), 707–711. doi: 10.1002/1096-8628(20001204)96:6<707::AID-AJMG1>3.0.CO;2-V3.0.CO;2-V>CrossRef Google Scholar 
  24. De Frias, C.M., Schaie, K.W., & Willis, S.L. (2014). Hypertension moderates the effect of APOE on 21-year cognitive trajectories. Psychology and Aging, 29(2), 431–439. doi: 10.1037/a0036828 CrossRef  Google Scholar  PubMed 
  25. Goveas, J.S., Xie, C., Chen, G., Li, W., Ward, B.D., Franczak, M.B., & Li, S.-J. (2013). Functional network endophenotypes unravel the effects of apolipoprotein E epsilon 4 in middle-aged adults. PloS One, 8(2), e55902. doi: 10.1371/journal.pone.0055902 CrossRef  Google Scholar  PubMed 
  26. Greenwood, P.M., Sunderland, T., Friz, J.L., & Parasuraman, R. (2000). Genetics and visual attention: Selective deficits in healthy adult carriers of the ɛ4 allele of the apolipoprotein E gene. Proceedings of the National Academy of Sciences of the United States of America, 97(21), 11661–11666. CrossRef  Google Scholar  PubMed 
  27. Greenwood, P.M., Lambert, C., Sunderland, T., & Parasuraman, R. (2005). Effects of apolipoprotein E genotype on spatial attention, working memory, and their interaction in healthy, middle-aged adults: Results from the National Institute of Mental Health’s BIOCARD study. Neuropsychology, 19(2), 199–211. CrossRef  Google Scholar  PubMed 
  28. Greenwood, P.M., Espeseth, T., Lin, M.-K., Reinvang, I., & Parasuraman, R. (2014). Longitudinal change in working memory as a function of APOE genotype in midlife and old age. Scandinavian Journal of Psychology, 55(3), 268–277. doi: 10.1111/sjop.12123 CrossRef  Google Scholar  PubMed 
  29. Greenwood, P.M., Sunderland, T., Putnam, K., Levy, J., & Parasuraman, R. (2005). Scaling of visuospatial attention undergoes differential longitudinal change as a function of APOE genotype prior to old age: Results from the NIMH BIOCARD Study. Neuropsychology, 19(6), 830–840. doi: 10.1037/0894-4105.19.6.830 CrossRef  Google Scholar  PubMed 
  30. Han, S.D., & Bondi, M.W. (2008). Revision of the apolipoprotein E compensatory mechanism recruitment hypothesis. Alzheimer’s & Dementia, 4(4), 251–254. doi: 10.1016/j.jalz.2008.02.006 CrossRef  Google Scholar  PubMed 
  31. Han, S.D., Drake, A.I., Cessante, L.M., Jak, A.J., Houston, W.S., Delis, D.C., & Bondi, M.W. (2007). Apolipoprotein E and traumatic brain injury in a military population: Evidence of a neuropsychological compensatory mechanism? Journal of Neurology, Neurosurgery, and Psychiatry, 78(10), 1103–1108. doi: 10.1136/jnnp.2006.108183 CrossRef  Google Scholar 
  32. Herrup, K. (2010). Reimagining Alzheimer’s disease--An age-based hypothesis. Journal of Neuroscience, 30(50), 16755–16762. doi: 10.1523/JNEUROSCI.4521-10.2010 CrossRef  Google Scholar  PubMed 
  33. Hubacek, J.A., Pitha, J., Škodová, Z., Adámková, V., Lánská, V., & Poledne, R. (2001). A possible role of apolipoprotein E polymorphism in predisposition to higher education. Neuropsychobiology, 43(3), 200–203. doi: 10.1159/000054890 CrossRef  Google Scholar  PubMed 
  34. Ihle, A., Bunce, D., & Kliegel, M. (2012). APOE ε4 and cognitive function in early life: A meta-analysis. Neuropsychology, 26(3), 267–277. doi: 10.1037/a0026769 CrossRef  Google Scholar  PubMed 
  35. Jochemsen, H.M., Muller, M., van der Graaf, Y., & Geerlings, M.I. (2012). APOE ε4 differentially influences change in memory performance depending on age. The SMART-MR study. Neurobiology of Aging, 33(4), 832.e15–e22. doi: 10.1016/j.neurobiolaging.2011.07.016 CrossRef  Google Scholar  PubMed 
  36. Jorm, A.F., Mather, K.A., Butterworth, P., Anstey, K.J., Christensen, H., & Easteal, S. (2007). APOE genotype and cognitive functioning in a large age-stratified population sample. Neuropsychology, 21(1), 1–8. doi: 10.1037/0894-4105.21.1.1 CrossRef  Google Scholar 
  37. Köhler, S., Baars, M.A.E., Spauwen, P., Schievink, S., Verhey, F.R.J., & van Boxtel, M.J.P. (2014). Temporal evolution of cognitive changes in incident hypertension: Prospective cohort study across the adult age span. Hypertension, 63(2), 245–251. doi: 10.1161/HYPERTENSIONAHA.113.02096 CrossRef  Google Scholar  PubMed 
  38. Kozauer, N.A., Mielke, M.M., Chan, G.K.C., Rebok, G.W., & Lyketsos, C.G. (2008). Apolipoprotein E genotype and lifetime cognitive decline. International Psychogeriatrics, 20(01), 109–123. doi: 10.1017/S104161020700587X CrossRef  Google Scholar  PubMed 
  39. Langbaum, J.B.S., Chen, K., Caselli, R.J., Lee, W., Reschke, C., Bandy, D., & Reeder, S.A. (2010). Hypometabolism in Alzheimer-affected brain regions in cognitively healthy Latino individuals carrying the apolipoprotein E ε4 allele. Archives of Neurology, 67(4), 462–468. CrossRef  Google Scholar  PubMed 
  40. Levy, J.A., Bergeson, J., Putnam, K., Rosen, V., Cohen, R., Lalonde, F., & Sunderland, T. (2004). Context-specific memory and apolipoprotein E (ApoE) epsilon 4: Cognitive evidence from the NIMH prospective study of risk for Alzheimer’s disease. Journal of the International Neuropsychological Society, 10(3), 362–370. doi: 10.1017/S1355617704103044 CrossRef  Google Scholar  PubMed 
  41. Li, W., Antuono, P.G., Xie, C., Chen, G., Jones, J.L., Ward, B.D., & Li, S.-J. (2014). Aberrant functional connectivity in Papez circuit correlates with memory performance in cognitively intact middle-aged APOΕ4 carriers. Cortex, 57, 167–176. doi: 10.1016/j.cortex.2014.04.006 CrossRef  Google Scholar 
  42. Mahley, R.W. (1988). Apolipoprotein E: Cholesterol transport protein with expanding role in cell biology. Science, 240(4852), 622–630. CrossRef  Google Scholar  PubMed 
  43. Marchant, N.L., King, S.L., Tabet, N., & Rusted, J.M. (2010). Positive effects of cholinergic stimulation favor young APOE epsilon4 carriers. Neuropsychopharmacology, 35(5), 1090–1096. doi: 10.1038/npp.2009.214 CrossRef  Google Scholar  PubMed 
  44. Marioni, R.E., Campbell, A., Scotland, G., Hayward, C., Porteous, D.J., & Deary, I.J. (2016). Differential effects of the APOE ε4 allele on different domains of cognitive ability across the life-course. European Journal of Human Genetics, 24, 919–923. doi: 10.1038/ejhg.2015.210 CrossRef  Google Scholar 
  45. Miyake, A., Friedman, N.P., Emerson, M.J., Witzki, A.H., Howerter, A., & Wager, T.D. (2000). The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49–100. doi: 10.1006/cogp.1999.0734 CrossRef  Google Scholar  PubMed 
  46. Mondadori, C.R.A., de Quervain, D.J.-F., Buchmann, A., Mustovic, H., Wollmer, M.A., Schmidt, C.F., & Henke, K. (2007). Better memory and neural efficiency in young apolipoprotein E epsilon4 carriers. Cerebral Cortex, 17(8), 1934–1947. doi: 10.1093/cercor/bhl103 CrossRef  Google Scholar  PubMed 
  47. Nichols, L.M., Masdeu, J.C., Mattay, V.S., Kohn, P., Emery, M., Sambataro, F., & Weinberger, D.R. (2012). Interactive effect of apolipoprotein e genotype and age on hippocampal activation during memory processing in healthy adults. Archives of General Psychiatry, 69(8), 804–813. CrossRef  Google Scholar  PubMed 
  48. Oberlin, L.E., Manuck, S.B., Gianaros, P.J., Ferrell, R.E., Muldoon, M.F., Jennings, J.R., & Erickson, K.I. (2015). Blood pressure interacts with APOE ε4 to predict memory performance in a midlife sample. Neuropsychology, 29(5), 693–702. doi: neu0000177 CrossRef  Google Scholar 
  49. Panizzon, M.S., Hauger, R., Xian, H., Vuoksimaa, E., Spoon, K.M., Mendoza, S.P., & Franz, C.E. (2014). Interaction of APOE genotype and testosterone on episodic memory in middle-aged men. Neurobiology of Aging, 35(7), 1778.e1–1778.e8. doi:10.1016/j.neurobiolaging.2013.12.025. CrossRef  Google Scholar  PubMed 
  50. Patel, K.T., Stevens, M.C., Pearlson, G.D., Winkler, A.M., Hawkins, K.A., Skudlarski, P., & Bauer, L.O. (2013). Default mode network activity and white matter integrity in healthy middle-aged ApoΕ4 carriers. Brain Imaging and Behavior, 7(1), 60–67. doi: 10.1007/s11682-012-9187-y CrossRef  Google Scholar 
  51. Peila, R., White, L.R., Petrovich, H., Masaki, K., Ross, G.W., Havlik, R.J., & Launer, L.J. (2001). Joint effect of the APOE gene and midlife systolic blood pressure on late-life cognitive impairment: The Honolulu-Asia aging study. Stroke, 32(12), 2882–2889. doi: 10.1161/hs1201.100392 CrossRef  Google Scholar  PubMed 
  52. Protas, H.D., Chen, K., Langbaum, J.B.S., Fleisher, A.S., Alexander, G.E., Lee, W., & Reiman, E.M. (2013). Posterior cingulate glucose metabolism, hippocampal glucose metabolism, and hippocampal volume in cognitively normal, late-middle-aged persons at 3 levels of genetic risk for Alzheimer disease. JAMA Neurology, 70(3), 320–325. doi: 10.1001/2013.jamaneurol.286 CrossRef  Google Scholar  PubMed 
  53. Puttonen, S., Elovainio, M., Kivimäki, M., Lehtimäki, T., & Keltikangas-Järvinen, L. (2003). The combined effects of apolipoprotein E polymorphism and low-density lipoprotein cholesterol on cognitive performance in young adults. Neuropsychobiology, 48(1), 35–40. doi: 10.1159/000071827 CrossRef  Google Scholar  PubMed 
  54. Ready, R.E., Baran, B., Chaudhry, M., Schatz, K., Gordon, J., & Spencer, R.M.C. (2011). Apolipoprotein E-ε4, processing speed, and white matter volume in a genetically enriched sample of midlife adults. American Journal of Alzheimer’s Disease and Other Dementias, 26(6), 463–468. doi: 10.1177/1533317511421921 CrossRef  Google Scholar 
  55. Rusted, J.M., Evans, S.L., King, S.L., Dowell, N., Tabet, N., & Tofts, P.S. (2013). APOE ε4 polymorphism in young adults is associated with improved attention and indexed by distinct neural signatures. Neuroimage, 65, 364–373. doi: 10.1016/j.neuroimage.2012.10.010 CrossRef  Google Scholar 
  56. Sager, M., Hermann, B., & La Rue, A. (2005). Middle-aged children of persons with Alzheimer’s disease: APOE genotypes and cognitive function in the Wisconsin Registry for Alzheimer’s Prevention. Journal of Geriatric Psychiatry and Neurology, 18(4), 245–249. doi: 10.1177/0891988705281882 CrossRef  Google Scholar  PubMed 
  57. Schultz, M.R., Lyons, M.J., Franz, C.E., Grant, M.D., Boake, C., Jacobson, K.C., & Kremen, W.S. (2008). Apolipoprotein E genotype and memory in the sixth decade of life. Neurology, 70(19 Pt 2), 1771–1777. doi: 10.1212/01.wnl.0000286941.74372.cc CrossRef  Google Scholar  PubMed 
  58. Shin, M.H., Kweon, S.S., Choi, J.S., Lee, Y.H., Nam, H.S., Park, K.S., & Jeong, S.K. (2014). The effect of an APOE polymorphism on cognitive function depends on age. Journal of Neurology, 261, 66–72. doi: 10.1007/s00415-013-7157-y CrossRef  Google Scholar  PubMed 
  59. Small, B.J., Rosnick, C.B., Fratiglioni, L., & Bäckman, L. (2004). Apolipoprotein E and cognitive performance: A meta-analysis. Psychology and Aging, 19(4), 592–600. doi: 10.1037/0882-7974.19.4.592 CrossRef  Google Scholar  PubMed 
  60. Sunderland, T., Mirza, N., Putnam, K.T., Linker, G., Bhupali, D., Durham, R., & Cohen, R.M. (2004). Cerebrospinal fluid ??-amyloid 1-42 and tau in control subjects at risk for Alzheimer’s disease: The effect of APOE ??4 allele. Biological Psychiatry, 56(9), 670–676. doi: 10.1016/j.biopsych.2004.07.021 CrossRef  Google Scholar 
  61. Taylor, W.D., Boyd, B., Turner, R., McQuoid, D.R., Ashley-Koch, A., MacFall, J.R., & Potter, G.G. (2016). APOE ε4 associated with preserved executive function performance and maintenance of temporal and cingulate brain volumes in younger adults. Brain Imaging and Behavior. doi: 10.1007/s11682-016-9522-9 Google Scholar  PubMed 
  62. Trachtenberg, A.J., Filippini, N., Cheeseman, J., Duff, E.P., Neville, M.J., Ebmeier, K.P., & Mackay, C.E. (2012). The effects of APOE on brain activity do not simply reflect the risk of Alzheimer’s disease. Neurobiology of Aging, 33(3), 618.e1–618.e13. doi: 10.1016/j.neurobiolaging.2010.11.011 CrossRef  Google Scholar  PubMed 
  63. van Exel, E., de Craen, A.J.M., Gussekloo, J., Houx, P., Bootsma-van der Wiel, A., Macfarlane, P.W., & Westendorp, R.G.J. (2002). Association between high-density lipoprotein and cognitive impairment in the oldest old. Annals of Neurology, 51(6), 716–721. doi: 10.1002/ana.10220 CrossRef  Google Scholar  PubMed 
  64. Velichkovsky, B.B., Roschina, I.F., & Selezneva, N.D. (2015). Cognitive control and memory in healthy ApoE-ε4 carriers with a family history of Alzheimer’s disease. Psychology in Russia: State of the Art, 8(1), 4–13. doi: 10.11621/pir.2015.0101 Google Scholar 
  65. Walhovd, K.B., Fjell, A.M., & Espeseth, T. (2014). Cognitive decline and brain pathology in aging--Need for a dimensional, lifespan and systems vulnerability view. Scandinavian Journal of Psychology, 55(3), 244–254. doi: 10.1111/sjop.12120 CrossRef  Google Scholar  PubMed 
  66. Whitmer, R.A., Sidney, S., Selby, J., Johnston, S.C., & Yaffe, K. (2005). Midlife cardiovascular risk factors and risk of dementia in late life. Neurology, 64(2), 277–281. doi: 10.1212/01.WNL.0000149519.47454.F2 CrossRef  Google Scholar  PubMed 
  67. Wirth, M., Villeneuve, S., La Joie, R., Marks, S.M., & Jagust, W.J. (2014). Gene-environment interactions: Lifetime cognitive activity, APOE genotype, and β-amyloid burden. The Journal of Neuroscience, 34(25), 8612–8617. doi: 10.1523/JNEUROSCI.4612-13.2014 CrossRef  Google Scholar  PubMed 
  68. Wisdom, N.M., Callahan, J.L., & Hawkins, K.A. (2011). The effects of apolipoprotein E on non-impaired cognitive functioning: A meta-analysis. Neurobiology of Aging, 32(1), 63–74. doi: 10.1016/j.neurobiolaging.2009.02.003 CrossRef  Google Scholar  PubMed 
  69. Xu, G., McLaren, D.G., Ries, M.L., Fitzgerald, M.E., Bendlin, B.B., Rowley, H.A., & Johnson, S.C. (2009). The influence of parental history of Alzheimer’s disease and apolipoprotein E epsilon4 on the BOLD signal during recognition memory. Brain, 132(Pt 2), 383–391. doi: 10.1093/brain/awn254 CrossRef  Google Scholar  PubMed 
  70. Yan, F.-X., Wu, C.W., Chao, Y.-P., Chen, C.-J., & Tseng, Y.-C. (2015). APOE-ε4 allele altered the rest-stimulus interactions in healthy middle-aged adults. PloS One, 10(6), e0128442. doi: 10.1371/journal.pone.0128442 CrossRef  Google Scholar  PubMed 
  71. Yu, Y.W., Lin, C.H., Chen, S.P., Hong, C.J., & Tsai, S.J. (2000). Intelligence and event-related potentials for young female human volunteer apolipoprotein E epsilon4 and non-epsilon4 carriers. Neuroscience Letters, 294, 179–181. doi: S030439400001569X [pii] CrossRef  Google Scholar  PubMed 
  72. Zade, D., Beiser, A., McGlinchey, R., Au, R., Seshadri, S., Palumbo, C., & Milberg, W. (2010). Interactive effects of apolipoprotein E Type 4 genotype and cerebrovascular risk on neuropsychological performance and structural brain changes. Journal of Stroke and Cerebrovascular Diseases, 19(4), 261–268. doi: 10.1016/j.jstrokecerebrovasdis.2009.05.001 CrossRef  Google Scholar  PubMed 
  73. Zhao, J.H., Brunner, E.J., Kumari, M., Singh-Manoux, A., Hawe, E., Talmud, P.J., & Humphries, S.E. (2005). APOE polymorphism, socioeconomic status and cognitive function in mid-life. The Whitehall II longitudinal study. Social Psychiatry and Psychiatric Epidemiology, 40, 557–563. doi: 10.1007/s00127-005-0925-y CrossRef  Google Scholar  PubMed 
  74. Zuelsdorff, M.L., Engelman, C.D., Friedman, E.M., Koscik, R.L., Jonaitis, E.M., La Rue, A., & Sager, M.A. (2013). Stressful events, social support, and cognitive function in middle-aged adults with a family history of Alzheimer’s disease. Journal of Aging and Health, 25, 944–959. 0898264313498416. CrossRef  Google Scholar  PubMed 
Systematic Review of Neuropsychological Rehabilitation for Prospective Memory Deficits as a Consequence of Acquired Brain Injury
Author(s)
  • Steven Mahan | Child and Adolescent Neuropsychology Group, Psychology, University of Exeter, Exeter, United Kingdom
  • Rebecca Rous | Acute Neurological Rehabilitation Unit, The Wellington Hospital, St John’s Wood, London, United Kingdom
  • Anna Adlam | Child and Adolescent Neuropsychology Group, Psychology, University of Exeter, Exeter, United Kingdom

Correspondence
E-mail address | a.r.adlam@exeter.ac.uk

Disclosures
No conflict of interest to report. This critical review received no funding or financial support.

Abstract
Objectives:

Prospective memory (PM) impairments are common following acquired brain injury (ABI). PM is the ability to keep a goal in mind for future action and interventions have the potential to increase independence. This review aimed to evaluate studies examining PM rehabilitation approaches in adults and children with ABI.

Methods:

Relevant literature was identified using PsycARTICLES (1894 to present), PsycINFO (1880 to present), the Cochrane Library (1972 to present), MEDLINE PubMed, reference lists from relevant journal articles, and searches of key journals. Literature searches were conducted using variants of the termsbrain injury,stroke, encephalitis, meningitis, andtumor, combined with variants of the termsrehabilitationandprospective memory.

Results:

Of the 435 papers identified, 11 were included in the review. Findings demonstrated a variety of interventions to alleviate PM deficits, including compensatory strategies (e.g., external memory aids) that provide either content-specific or content-free cueing, and remediation strategies (e.g., meta-cognitive training programs) aimed at improving the self-monitoring of personal goals. Risk of bias for individual studies was considered and the strengths and limitations of each of the included studies and the review itself were discussed.

Conclusions:

Interventions used with adults can be effective; PM abilities can be improved by using simple reminder systems and performance can be generalized to facilitate everyday PM functioning. There is, however, a lack of research of PM interventions conducted with children with ABI, and pediatric interventions need to consider on-going cognitive maturation. (JINS, 2017,23, 254–265)

Bibliography
  1. Burgess, P.W., Scott, S.K., & Frith, C.D. (2003). The role of the rostral frontal cortex (area 10) in prospective memory: A lateral versus medial dissociation. Neuropsychologia, 41, 906–918. CrossRef  Google Scholar  PubMed 
  2. Cicerone, K.D., Dahlberg, C., Malec, J.F., Langenbahn, D.M., Felicetti, T., Kneipp, S., & Catanese, J. (2005). Evidence-based cognitive rehabilitation: Updated review of the literature from 1998 through 2002. Archives in Physical and Medical Rehabilitation, 86, 1681–1692. CrossRef  Google Scholar  PubMed 
  3. Cicerone, K.D., Azulay, J., & Trott, C. (2009). Methodological quality of research on cognitive rehabilitation after traumatic brain injury. Archives of Physical and Medical Rehabilitation, 90, 52–59. CrossRef  Google Scholar  PubMed 
  4. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.), Hillsdale, NJ: Lawrence Erlbaum Associates Publishers. Google Scholar 
  5. Clune-Ryberg, M., Blanco-Campal, A., Carton, S., Pender, N., Obrien, D., Phillips, J., & Burke, T. (2011). The contribution of retrospective memory, attention and executive functions to the prospective and retrospective components of prospective memory following TBI. Brain Injury, 25(9), 819–831. CrossRef  Google Scholar  PubMed 
  6. Coronado, V.G., Xu, L., Basavaraju, S.V., McGuire, L.C., Wald, M.M., Faul, M., & Hemphill, J.D. (2011). Surveillance for traumatic brain injury—related Deaths - United States, 1997–2007. Surveillance Summaries, 60(SS05), 1–32. Google Scholar  PubMed 
  7. Duncan, J. (1986). Disorganisation of behaviour after frontal lobe damage. Cognitive Neuropsychology, 3, 271–290. CrossRef  Google Scholar 
  8. Duncan, J., Emslie, H., Williams, P., Johnson, R., & Freer, C. (1996). Intelligence and the frontal lobe: The organization of goal-directed behaviour. Cognitive Psychology, 30, 257–303. CrossRef  Google Scholar 
  9. Ellis, J. A. (1996). Prospective memory or the realization of delayed intentions: A conceptual framework for research. In M. Brandimonte, G.O. Einstein & M.A. McDaniel (Eds.), Prospective memory: Theory and applications (pp. 1–22). Mahwah, NJ: Lawrence Erlbaum Associates, Inc. Google Scholar 
  10. Emslie, H., Wilson, B.A., Quirk, K., Evans, J.J., & Watson, P. (2007). Using a paging system in the rehabilitation of encephalitic patients. Neuropsychological Rehabilitation, 17(4/5), 567–581. CrossRef  Google Scholar  PubMed 
  11. Ferguson, S., Friedland, D., & Woodberry, E. (2015). Smartphone technology: Gentle reminders of everyday tasks for those with prospective memory difficulties post-brain injury. Brain Injury, Early Online, 1–9. Google Scholar  PubMed 
  12. Fish, J., Evans, J.J., Nimmo, M., Martin, E., Kersel, D., Bateman, A., & Manly, T. (2007). Rehabilitation of executive dysfunction following brain injury: “Content-free” cueing improves everyday prospective memory performance. Neuropsychologia, 45, 1318–1330. CrossRef  Google Scholar  PubMed 
  13. Fish, J., Wilson, B., & Manly, T. (2010). The assessment and rehabilitation of prospective memory problems in people with neurological disorders. Neuropsychological Rehabilitation, 20(2), 161–179. CrossRef  Google Scholar  PubMed 
  14. Gamino, J.F., & Chapman, S. (2007). Strategic learning in youth with traumatic brain injury: Evidence for stall in higher-order cognition. Topics in Language Disorders, 29(3), 224–235. CrossRef  Google Scholar 
  15. Gilewski, M., Zelinski, E., & Shaie, K.W. (1990). The Memory Functioning Questionnaire for assessment of memory complaints in adulthood and old age. Psychology of Ageing, 5, 482–490. CrossRef  Google Scholar  PubMed 
  16. Gravetter, F.J., & Forzano, L-A.B. (2006). Research methods for the behavioral sciences (2nd ed.), Belmont, CA: Thomson Wadsworth. Google Scholar 
  17. Hawley, C.A., Ward, A.B., Long, J., Owen, D.W., & Magnay, A.R. (2003). Prevalence of traumatic brain injury amongst children admitted to hospital in one health district: A population-based study. Injury, 34(4), 256–260. CrossRef  Google Scholar  PubMed 
  18. Headway. (2015). Acquired brain injury: The numbers behind the hidden disability. Retrieved from https://www.headway.org.uk/media/2883/acquired-brain-injury-the-numbers-behind-the-hidden-disability.pdfGoogle Scholar 
  19. Hedges, L.V., & Vevea, J.L. (1998). Fixed- and random-effects models in meta-analysis. Psychological Methods, 3, 486–504. CrossRef  Google Scholar 
  20. Herrman, D., Brubaker, B., Yoder, C., Sheets, V., & Tio, A. (1999). Devices that remind. In F. T. Durso (Ed.), Handbook of applied cognition (pp. 377–407). New York, NY: John Wiley & Sons, Ltd. Google Scholar 
  21. Hiroyoshi, A., Shinagawa, S., Komori, K., Toyota, Y., Mori, T., Matsumoto, T., & Ikeda, M. (2013). Comparison of the utility of everyday memory test and the Alzheimer’s Disease Assessment Scale-Cognitive part for evaluation of mild cognitive impairment and very mild Alzheimer’s disease. Psychiatry & Clinical Neurosciences, 67(3), 148–153. Google Scholar 
  22. Krasny-Pacini, A., Limond, J., Evans, J., Hiebel, J., Bendjelida, K., & Chevgnard, M. (2013). Context-sensitive Goal Management Training for everyday executive dysfunction in children after severe traumatic brain injury. Journal of Head Trauma Rehabilitation, 29, E40–E64. Google Scholar  PubMed 
  23. Krasny-Pacini, A., Chevignard, M., & Evans, J. (2014). Goal management training for rehabilitation of executive functions: A systematic review of effectiveness in patients with acquired brain injury. Disability & Rehabilitation, 36(2), 105–116. CrossRef  Google Scholar  PubMed 
  24. Kvavilashvili, L., & Ellis, J. (1996). Varieties of intention: Some distinctions and classifications. In M. Brandimonte, G. O. Einstein & M. A. McDaniel (Eds.), Prospective memory: Theory and applications (pp. 23–52). Mahwah, NJ: Lawrence Erlbaum. Google Scholar 
  25. Laatsch, L., Harrington, D., Hotz, G., Marcantuono, J., Mozzoni, M.P., Walsh, V., & Pike-Hersey, K. (2007). An evidence-based review of cognitive and behavioural rehabilitation treatment studies in children with acquired brain injury. Journal of Head Trauma Rehabilitation, 22(4), 248–256. CrossRef  Google Scholar  PubMed 
  26. Langlois, J.A., Rutland-Brown, W., & Thomas, K.E. (2006). Traumatic brain injury in the United States: Emergency department visits, hospitalizations, and deaths 2002-2006. Retrieved from http://www.cdc.gov/traumaticbraininjury/pdf/blue_book.pdfGoogle Scholar 
  27. Lannin, N., Carr, B., Allaous, J., Mackenzie, B., Falcon, A., & Tate, R. (2014). A randomised control trial of the effectiveness of handled computers of improving everyday memory functioning in patients with memory impairments after acquired brain injury. Clinical Rehabilitation, 28(5), 470–481. CrossRef  Google Scholar 
  28. Lemoncello, R., Sohlberg, M.M., Fickas, S., & Prideaux, J. (2011). A randomised controlled crossover trial evaluating Television Assisted Prompting (TAP) for adults with acquired brain injury. Neuropsychological Rehabilitation, 21(6), 825–846. CrossRef  Google Scholar  PubMed 
  29. Levine, B., Robertson, I.H., Clare, L., Carter, G., Hong, J., … Wilson, B.A. (2007). Rehabilitation of executive functioning: An experimental-clinical validation of goal management training. Journal of the International Neuropsychological Society, 6(3), 299–312. CrossRef  Google Scholar  PubMed 
  30. Limond, J., & Leeke, R. (2005). Practitioner review: Cognitive rehabilitation for children with acquired brain injury. Journal of Child Psychology and Psychiatry, 46(4), 339–352. CrossRef  Google Scholar  PubMed 
  31. Limond, J., Adlam, A-L.R., & Cormack, M. (2014). A model for pediatric neurocognitive interventions: Considering the role of development and maturation in rehabilitation planning. The Clinical Neuropsychologist, 28(2), 181–198. CrossRef  Google Scholar  PubMed 
  32. McCauley, S.R., & Levin, H.B. (2004). Prospective memory in paediatric traumatic brain injury: A preliminary study. Developmental Neuropsychology, 25, 5–20. CrossRef  Google Scholar  PubMed 
  33. McDonald, A., Haslam, C., Yates, P., Gurr, B., Leeder, G., & Sayers, A. (2011). Google Calendar: A new memory aid to compensate for prospective memory deficits following acquired brain injury. Neuropsychological Rehabilitation, 21(6), 784–807. CrossRef  Google Scholar  PubMed 
  34. Middleton, J.A. (2001). Brain injury in children and adolescents. Advances in Psychiatric Treatment, 7, 257–265. CrossRef  Google Scholar 
  35. Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G., & The PRISMA Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA Statement. PLoS Med, 6(7), e1000097. CrossRef  Google Scholar  PubMed 
  36. Morris, S.B., & DeShon, R.P. (2002). Combining effect size estimates in meta-analysis with repeated measures and independent-groups designs. Psychological Methods, 7, 105–125. CrossRef  Google Scholar  PubMed 
  37. Rohling, M.L., Faust, M.E., Beverly, B., & Demakis, G. (2009). Effectiveness of cognitive rehabilitation following acquired brain injury: A meta-analytic re-examination of Cicerone et al.’s (2000, 2005) systematic reviews. Neuropsychology, 23, 20–39. CrossRef  Google Scholar  PubMed 
  38. Roozenbeek, B, Maas, A.I.R., & Menon, D.K. (2013). Changing patterns in the epidemiology of traumatic brain injury. Nature Reviews Neurology, 9, 231–236. CrossRef  Google Scholar  PubMed 
  39. Ross, K.A., Dorris, L., & McMillan, T. (2011). A systematic review of psychological interventions to alleviate cognitive and psychosocial problems in children with acquired brain injury. Developmental Medicine & Child Neurology, 53(8), 692–701. CrossRef  Google Scholar  PubMed 
  40. Schaffer, Y., & Geva, R. (2016). Memory outcomes following cognitive interventions in children with neurological deficits: A review with a focus on under-studied populations. Neuropsychological Rehabilitation, 26(2), 286–317. CrossRef  Google Scholar  PubMed 
  41. Simons, J.S., Schölvinck, M.L., Gilbert, S.J., Frith, C.D., & Burgess, P.W. (2006). Differential components of prospective memory? Evidence from fMRI. Neuropsychologia, 44, 1388–1397. CrossRef  Google Scholar  PubMed 
  42. Stuss, D.T., & Alexander, M.P. (2000). Executive functions and the frontal lobes: A conceptual view. Psychological Research, 63(3–4), 289–298. CrossRef  Google Scholar  PubMed 
  43. Tate, R.L., McDonald, S., Perdices, M., Togher, L., Schultz, R., & Savage, S. (2008). Rating the methodological quality of single-subject designs and n-of-1 trials: Introducing the Single-Case Experimental Design (SCED) Scale. Neuropsychological Rehabilitation, 18(4), 385–401. CrossRef  Google Scholar  PubMed 
  44. Thöne-Otto, A.I.T., & Walther, K. (2008). Assessment and treatment of prospective memory disorders. In M. Kliegel, M.A. McDaniel & G.O. Einstein (Eds.), Prospective memory. Cognitive, neuroscience, developmental and applied perspectives (pp. 321–341). New York, NY: Lawrence Erlbaum Associates Taylor Francis Group. Google Scholar 
  45. Van Den Broek, M.D., Downes, J., Johnson, Z., Dayus, B, & Hilton, N. (2000). Evaluation of an electric memory aid in the neuropsychological rehabilitation of prospective memory deficits. Brain Injury, 14(5), 455–462. CrossRef  Google Scholar 
  46. Waldron, B., Grimson, J., Carton, S., & Blanco-Campal, A. (2012). Effectiveness of an unmodified personal digital assistant as a compensatory strategy for prospective memory failures in adults with an ABI. The Irish Journal of Psychology, 33(1), 29–42. CrossRef  Google Scholar 
  47. Wilson, B.A., Emslie, H., Quirk, K., Evans, J., & Watson, P. (2005). A randomised control trial to evaluate a paging system for people with traumatic brain injury. Brain Injury, 19(11), 891–894. CrossRef  Google Scholar 
  48. Wilson, B.A. (2004). Theoretical approaches to cognitive rehabilitation. In L.H. Goldstein & J.E. McNeil (Eds.), Clinical neuropsychology: A practical guide to assessment and management for clinicians (pp. 345–366). London, UK: John Wiley & Sons, Ltd. Google Scholar 
  49. Wilson, B.A., Emslie, H., Evans, J.J., Quirk, K., Watson, P., & Fish, J. (2009). The NeuroPage system for children and adolescents with neurological deficits. Developmental Neurorehabilitation, 12(6), 421–426. CrossRef  Google Scholar  PubMed 
  50. Ylvisaker, M. (1998). Traumatic brain injury rehabilitation: Children and adolescents (2nd ed), Newton, MA: Butterworth-Heinemann. Google Scholar 
Deficits in Social Cognition: An Unveiled Signature of Multiple Sclerosis
Author(s)
  • Moussa A. Chalah | EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil, Créteil, France, Service de Physiologie – Explorations Fonctionnelles, Hôpital Henri Mondor, Assistance Publique – Hôpitaux de Paris, Créteil, France
  • Samar S. Ayache | EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil, Créteil, France, Service de Physiologie – Explorations Fonctionnelles, Hôpital Henri Mondor, Assistance Publique – Hôpitaux de Paris, Créteil, France, Neurology Division, Lebanese American University Medical Center-Rizk Hospital (LAUMC-RH), Beirut, Lebanon

Correspondence
E-mail address | samarayache@gmail.com

Disclosures
Both authors declare no conflict of interest.

Abstract
Background and Objectives:

Multiple sclerosis (MS) is a chronic progressive inflammatory disease of the central nervous system, representing the primary cause of non-traumatic disability in young adults. Cognitive dysfunction can affect patients at any time during the disease process and might alter the six core functional domains. Social cognition is a multi-component construct that includes the theory of mind, empathy and social perception of emotions from facial, bodily and vocal cues. Deficits in this cognitive faculty might have a drastic impact on interpersonal relationships and quality of life (QoL). Although exhaustive data exist for non-social cognitive functions in MS, only a little attention has been paid for social cognition. The objectives of the present work are to reappraise the definition and anatomy of social cognition and evaluate the integrity of this domain across MS studies. We will put special emphasis on neuropsychological and neuroimaging studies concerning social cognitive performance in MS.

Methods:

Studies were selected in conformity with PRISMA guidelines. We looked for computerized databases (PubMed, Medline, and Scopus) that index peer-reviewed journals to identify published reports in English and French languages that mention social cognition and multiple sclerosis, regardless of publication year. We combined keywords as follows: (facial emotion or facial expression or emotional facial expressions or theory of mind or social cognition or empathy or affective prosody) AND multiple sclerosis AND (MRI or functional MRI or positron emission tomography or functional imaging or structural imaging). We also scanned references from articles aiming to get additional relevant studies.

Results:

In total, 26 studies matched the abovementioned criteria (26 neuropsychological studies including five neuroimaging studies). Available data support the presence of social cognitive deficits even at early stages of MS. The increase in disease burden along with the “multiple disconnection syndrome” resulting from gray and white matters pathology might exceed the “threshold for cerebral tolerance” and can manifest as deficits in social cognition. Admitting the impact of the latter on patients’ social functioning, a thorough screening for such deficits is crucial to improving patients’ QoL. (JINS, 2017,23, 266–286)

Bibliography
  1. Abdel-Hamid, M., Lehmkämper, C., Sonntag, C., Juckel, G., Daum, I., & Brüne, M. (2009). Theory of mind in schizophrenia: The role of clinical symptomatology and neurocognition in understanding other people’s thoughts and intentions. Psychiatry Research, 165(1-2), 19–26. doi: 10.1016/j.psychres.2007.10.021 CrossRef  Google Scholar  PubMed 
  2. Ackerer, A.W. (2003). Emotional intelligence, academic intelligence and speed of mind: The case of emotion perception. Munich: GRIN Verlag. Google Scholar 
  3. Adolphs, R. (2002). Neural systems for recognizing emotion. Current Opinion in Neurobiology, 12(2), 169–177. CrossRef  Google Scholar  PubMed 
  4. Adolphs, R. (2006). How do we know the minds of others? Domain-specificity, simulation, and enactive social cognition. Brain Research, 1079(1), 25–35. CrossRef  Google Scholar 
  5. Adolphs, R., Baron-Cohen, S., & Tranel, D. (2002). Impaired recognition of social emotions following amygdala damage. Journal of Cognitive Neuroscience, 14(8), 1264–1274. CrossRef  Google Scholar 
  6. Allison, T., Puce, A., & McCarthy, G. (2000). Social perception from visual cues: Role of the STS region. Trends in Cognitive Sciences, 4(7), 267–278. CrossRef  Google Scholar  PubMed 
  7. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders(5th ed.) Washington, DC: American Psychiatric Association. Google Scholar  PubMed 
  8. Asthana, H.S., Mandal, M.K., Khurana, H., & Haque-Nizamie, S. (1998). Visuospatial and affect recognition deficit in depression. Journal of Affective Disorders, 48(1), 57–62. CrossRef  Google Scholar  PubMed 
  9. Auyeung, B., Wheelwright, S., Allison, C., Atkinson, M., Samarawickrema, N., & Baron-Cohen, S. (2009). The children’s empathy quotient and systemizing quotient: Sex differences in typical development and in autism spectrum conditions. Journal of Autism and Developmental Disorders, 39(11), 1509–1521. doi: 10.1007/s10803-009-0772-x CrossRef  Google Scholar 
  10. Ayache, S.S., Palm, U., Chalah, M.A., Nguyen, R., Farhat, W.H., Créange, A., &Lefaucheur, J.P. (2015). Orienting network dysfunction in progressive multiple sclerosis. Journal of the Neurological Sciences, 351(1-2), 206–207. doi: 10.1016/j.jns.2015.02.044 CrossRef  Google Scholar  PubMed 
  11. Baas, D., Aleman, A., & Kahn, R.S. (2004). Lateralization of amygdala activation: A systematic review of functional neuroimaging studies. Brain Research. Brain Research Reviews, 45(2), 96–103. CrossRef  Google Scholar  PubMed 
  12. Bagby, R.M., Parker, J.D., & Taylor, G.J. (1994). The twenty-item Toronto alexithymia scale-I. Item selection and cross-validation of the factor structure. Journal of Psychosomatic Research, 38, 23–32. CrossRef  Google Scholar  PubMed 
  13. Banati, M., Sandor, J., Mike, A., Illes, E., Bors, L., Feldmann, A., & Illes, Z. (2010). Social cognition and theory of mind in patients with relapsing-remitting multiple sclerosis. European Journal of Neurology, 17(3), 426–433. doi: 10.1111/j.1468-1331.2009.02836.x CrossRef  Google Scholar  PubMed 
  14. Baron-Cohen, S. (2000). Theory of mind and autism: A review. International Review of Research in Mental Retardation, 23, 169–184. CrossRef  Google Scholar 
  15. Baron-Cohen, S., Leslie, A.M., & Frith, U. (1985). Does the autistic child have a “theory of mind”? Cognition, 21(1), 37–46. CrossRef  Google Scholar  PubMed 
  16. Baron-Cohen, S., O’Riordan, M., Stone, V., Jones, R., & Plaisted, K. (1999). Recognition of faux pas by normally developing children and children with Asperger syndrome or high-functioning autism. Journal of Autism and Developmental Disorders, 29(5), 407–418. CrossRef  Google Scholar 
  17. Baron-Cohen, S., & Wheelwright, S. (2004). The empathy quotient: An investigation of adults with Asperger syndrome or high functioning autism, and normal sex differences. Journal of Autism and Developmental Disorders, 34(2), 163–175. CrossRef  Google Scholar  PubMed 
  18. Baron-Cohen, S., Wheelwright, S., Hill, J., Raste, Y., & Plumb, I. (2001). The “Reading the Mind in the Eyes” test revised version: A study with normal adults, and adults with Asperger syndrome or high-functioning autism. Journal of Child Psychology and Psychiatry, 42(2), 241–251. CrossRef  Google Scholar 
  19. Baron-Cohen, S., Jolliffe, T., Mortimore, C., & Robertson, M. (1997). A further advanced test of theory of mind: Evidence from very high functioning adults with autism or Asperger syndrome. Journal of Child Psychology and Psychiatry, 38(7), 813–822. CrossRef  Google Scholar 
  20. Beattie, L., Kyle, S.D., Espie, C.A., & Biello, S.M. (2015). Social interactions, emotion and sleep: A systematic review and research agenda. Sleep Medicine Reviews, 24, 83–100. doi: 10.1016/j.smrv.2014.12.005 CrossRef  Google Scholar  PubMed 
  21. Beatty, W.W., Goodkin, D.E., Weir, W.S., Staton, R.D., Monson, N., & Beatty, P.A. (1989). Affective judgments by patients with Parkinson’s disease or chronic progressive multiple sclerosis. Bulletin of the Psychonomic Society, 27(4), 361–364. CrossRef  Google Scholar 
  22. Beatty, W.W., Orbelo, D.M., Sorocco, K.H., & Ross, E.D. (2003). Comprehension of affective prosody in multiple sclerosis. Multiple Sclerosis, 9(2), 148–153. CrossRef  Google Scholar  PubMed 
  23. Benedict, R.H., Cookfair, D., Gavett, R., Gunther, M., Munschauer, F., Garg, N., & Weinstock-Guttman, B. (2006). Validity of the minimal assessment of cognitive function in multiple sclerosis (MACFIMS). Journal of the International Neuropsychological Society, 12(4), 549–558. CrossRef  Google Scholar 
  24. Benedict, R.H., Priore, R.L., Miller, C., Munschauer, F., & Jacobs, L. (2001). Personality disorder in multiple sclerosis correlates with cognitive impairment. The Journal of Neuropsychiatry and Clinical Neurosciences, 13(1), 70–76. CrossRef  Google Scholar  PubMed 
  25. Benton, A.L., Sivan, A.B., Hamsher, K., Varney, N.R., & Spreen, O. (1994). Contributions to neuropsychological assessment. New York: Oxford University Press. Google Scholar 
  26. Berneiser, J., Wendt, J., Grothe, M., Kessler, C., Hamm, A.O., & Dressel, A. (2014). Impaired recognition of emotional facial expressions in patients with multiple sclerosis. Multiple Sclerosis and Related Disorders, 3(4), 482–488. doi: 10.1016/j.msard.2014.02.001 CrossRef  Google Scholar  PubMed 
  27. Bird, G., Silani, G., Brindley, R., White, S., Frith, U., & Singer, T. (2010). Empathic brain responses in insula are modulated by levels of alexithymia but not autism. Brain, 133(Pt 5), 1515–1525. doi: 10.1093/brain/awq060 CrossRef  Google Scholar 
  28. Bisecco, A., Caiazzo, G., d’Ambrosio, A., Sacco, R., Bonavita, S., Docimo, R., & Gallo, A. (2016). Fatigue in multiple sclerosis: The contribution of occult white matter damage. Multiple Sclerosis, 22, 1676–1684. CrossRef  Google Scholar 
  29. Bodini, B., Mandarelli, G., Tomassini, V., Tarsitani, L., Pestalozza, I., Gasperini, C., & Pozzilli, C. (2008). Alexithymia in multiple sclerosis: Relationship with fatigue and depression. Acta Neurologica Scandinavica, 118(1), 18–23. CrossRef  Google Scholar  PubMed 
  30. Bowers, D., Blonder, L.X., & Heilman, K.M. (1991). The Florida affect battery. Gainesville, FL: Center for Neuropsychological Studies, University of Florida. Google Scholar 
  31. Bowers, D., Blonder, L.X., & Heilman, K.M. (2001). The Florida affect battery, manual (revised). Gainesville, FL: Center for Neuropsychological Studies, University of Florida. Google Scholar 
  32. Bradley, M.M., & Lang, P.J. (2007). The International Affective Digitized Sounds (IADS-2): Affective ratings of sounds and instruction manual. Technical report B-3, (2nd ed.). Gainesville, FL: University of Florida. Google Scholar 
  33. Brothers, L. (1990). The social brain: A project for integrating primate behavior and neurophysiology in a new domain. Concepts in Neuroscience, 1, 27–51. Google Scholar 
  34. Buhse, M. (2008). Assessment of caregiver burden in families of persons with multiple sclerosis. Journal of Neuroscience Nursing, 40(1), 25–31. CrossRef  Google Scholar  PubMed 
  35. Cader, S., Cifelli, A., Abu-Omar, Y., Palace, J., & Matthews, P.M. (2006). Reduced brain functional reserve and altered functional connectivity in patients with multiple sclerosis. Brain, 129(Pt 2), 527–537. CrossRef  Google Scholar  PubMed 
  36. Calder, A.J., & Young, A.W. (2005). Understanding the recognition of facial identity and facial expression. Nature Reviews Neuroscience, 6(8), 641–651. CrossRef  Google Scholar 
  37. Carr, L., Iacoboni, M., Dubeau, M.C., Mazziotta, J.C., & Lenzi, G.L. (2003). Neural mechanisms of empathy in humans: A relay from neural systems for imitation to limbic areas. Proceedings of the National Academy of Sciences of the United States of America, 100(9), 5497–5502. CrossRef  Google Scholar  PubMed 
  38. Cavada, C., Company, T., Tejedor, J., Cruz-Rizzolo, R.J., & Reinoso-Suarez, F. (2000). The anatomical connections of the macaque monkey orbitofrontal cortex. A review. Cerebral Cortex, 10(3), 220–242. CrossRef  Google Scholar 
  39. Cavanna, A.E., & Trimble, M.R. (2006). The precuneus: A review of its functional anatomy and behavioural correlates. Brain, 129(Pt 3), 564–583. CrossRef  Google Scholar  PubMed 
  40. Cecchetto, C., Aiello, M., D’Amico, D., Cutuli, D., Cargnelutti, D., Eleopra, R., & Rumiati, R.I. (2014). Facial and bodily emotion recognition in multiple sclerosis: The role of alexithymia and other characteristics of the disease. Journal of the International Neuropsychological Society, 20(10), 1004–1014. doi: 10.1017/S1355617714000939 CrossRef  Google Scholar 
  41. Chahraoui, K., Duchene, C., Rollot, F., Bonin, B., & Moreau, T. (2014). Longitudinal study of alexithymia and multiple sclerosis. Brain and Behavior, 4(1), 75–82. doi: 10.1002/brb3.194 CrossRef  Google Scholar 
  42. Chahraoui, K., Pinoit, J.M., Viegas, N., Adnet, J., Bonin, B., & Moreau, T. (2008). Alexithymie et liens avec la dépression et l’anxiété dans la sclérose en plaques. Revue Neurologique, 164(3), 242–245. doi: 10.1016/j.neurol.2007.09.006 CrossRef  Google Scholar 
  43. Chalah, M.A., Riachi, N., Ahdab, R., Créange, A., Lefaucheur, J.P., & Ayache, S.S. (2015). Fatigue in multiple sclerosis: Neural correlates and the role of non-invasive brain stimulation. Frontiers in Cellular Neuroscience, 9, 460. doi: 10.3389/fncel.2015.00460 CrossRef  Google Scholar  PubMed 
  44. Chartrand, T.L., & Bargh, J.A. (1999). The chameleon effect: The perception-behavior link and social interaction. Journal of Personality and Social Psychology, 76(6), 893–910. CrossRef  Google Scholar  PubMed 
  45. Charvet, L.E., Cleary, R.E., Vazquez, K., Belman, A.L., & Krupp, L.B., US Network for Pediatric M.S.. (2014). Social cognition in pediatric-onset multiple sclerosis (MS). Multiple Sclerosis, 20(11), 1478–1484. doi: 10.1177/1352458514526942 CrossRef  Google Scholar 
  46. Citri, A., & Malenka, R.C. (2008). Synaptic plasticity: Multiple forms, functions, and mechanisms. Neuropsychopharmacology, 33(1), 18–41. CrossRef  Google Scholar 
  47. Compston, A., & Coles, A. (2008). Multiple sclerosis. Lancet, 372(9648), 1502–1517. doi: 10.1016/S0140-6736(08)61620-7 CrossRef  Google Scholar  PubMed 
  48. Costa, P.T., & McCrae, R.R. (1992). Professional Manual for the Revised NEO Personality Inventory and NEO Five-Factor Inventory. Odessa, FL: Psychological Assessment Resources. Google Scholar 
  49. Critchley, H.D. (2005). Neural mechanisms of autonomic, affective, and cognitive integration. Journal of Comparative Neurology, 493(1), 154–166. CrossRef  Google Scholar 
  50. Davis, M.H. (1983). Measuring individual differences in empathy: Evidence for a multidimensional approach. Journal of Personality and Social Psychology, 44, 113–126. CrossRef  Google Scholar 
  51. Decety, J., & Jackson, P.L. (2004). The functional architecture of human empathy. Behavioural and Cognitive Neuroscience Reviews, 3(2), 71–100. CrossRef  Google Scholar  PubMed 
  52. Di Bitonto, L., Longato, N., Jung, B., Fleury, M., Marcel, C., Collongues, N., & Blanc, F. (2011). [Reduced emotional reactivity to negative stimuli in multiple sclerosis, preliminary results]. Revue Neurologique, 167(11), 820–826. doi: 10.1016/j.neurol.2011.01.024 CrossRef  Google Scholar 
  53. Dziobek, I., Fleck, S., Kalbe, E., Rogers, K., Hassenstab, J., Brand, M., & Convit, A. (2006). Introducing MASC: A movie for the assessment of social cognition. Journal of Autism and Developmental Disorder, 36(5), 623–636. CrossRef  Google Scholar  PubMed 
  54. Ekman, P., & Friesen, W.V. (1976). Pictures of facial affect. Palo Alto, CA: Consulting Psychologists Press. Google Scholar 
  55. Ethofer, T., Anders, S., Erb, M., Herbert, C., Wiethoff, S., Kissler, J., & Wildgruber, D. (2006). Cerebral pathways in processing of affective prosody: A dynamic causal modeling study. Neuroimage, 30(2), 580–587. doi: 10.1016/j.neuroimage.2005.09.059 CrossRef  Google Scholar  PubMed 
  56. Fan, Y., Duncan, N.W., de Greck, M., & Northoff, G. (2011). Is there a core neural network in empathy? An fMRI based quantitative meta-analysis. Neuroscience & Biobehavioral Reviews, 35(3), 903–911. doi: 10.1016/j.neubiorev.2010.10.009 CrossRef  Google Scholar 
  57. Feinstein, A. (2011). Multiple sclerosis and depression. Multiple Sclerosis, 17(11), 1276–1281. doi: 10.1177/1352458511417835 CrossRef  Google Scholar  PubMed 
  58. Franz, M., Popp, K., Schaefer, R., Sitte, W., Schneider, C., Hardt, J., & Braehler, E. (2008). Alexithymia in the German general population. Social Psychiatry and Psychiatric Epidemiology, 43, 54–62. CrossRef  Google Scholar  PubMed 
  59. Frith, C.D. (2004). Schizophrenia and theory of mind. Psychological Medicine, 34(3), 385–389. CrossRef  Google Scholar  PubMed 
  60. Frith, C.D., & Frith, U. (2006). The neural basis of mentalizing. Neuron, 50(4), 531–534. CrossRef  Google Scholar  PubMed 
  61. Gajofatto, A., & Benedetti, M.D. (2015). Treatment strategies for multiple sclerosis: When to start, when to change, when to stop? World Journal of Clinical Cases, 3(7), 545–555. Google Scholar 
  62. Gallese, V., Keysers, C., & Rizzolatti, G. (2004). A unifying view of the basis of social cognition. Trends in Cognitive Sciences, 8(9), 396–403. CrossRef  Google Scholar  PubMed 
  63. Gay, M.C., Vrignaud, P., Garitte, C., & Meunier, C. (2010). Predictors of depression in multiple sclerosis patients. Acta Neurologica Scandinavica, 121(3), 161–170. doi: 10.1111/j.1600-0404.2009.01232.x CrossRef  Google Scholar  PubMed 
  64. Genova, H.M., Cagna, C.J., Chiaravalloti, N.D., DeLuca, J., & Lengenfelder, J. (2016). Dynamic assessment of social cognition in individuals with multiple sclerosis: A pilot study. Journal of the International Neuropsychological Society, 22(1), 83–88. doi: 10.1017/S1355617715001137 CrossRef  Google Scholar  PubMed 
  65. Ghashghaei, H.T., Hilgetag, C.C., & Barbas, H. (2007). Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. Neuroimage, 34(3), 905–923. CrossRef  Google Scholar  PubMed 
  66. Gleichgerrcht, E., Tomashitis, B., & Sinay, V. (2015). The relationship between alexithymia, empathy and moral judgment in patients with multiple sclerosis. European Journal of Neurology, 22(9), 1295–1303. doi: 10.1111/ene.12745 CrossRef  Google Scholar  PubMed 
  67. Gobbi, C., Rocca, M.A., Pagani, E., Ricreflli, G.C., Pravatà, E., Radaelli, M., & Filippi, M. (2014). Forceps minor damage and co-occurrence of depression and fatigue in multiple sclerosis. Multiple Sclerosis, 20(12), 1633–1640. doi: 10.1177/1352458514530022 CrossRef  Google Scholar 
  68. Gobbi, C., Rocca, M.A., Ricreflli, G., Pagani, E., Messina, R., Preziosa, P., & Filippi, M. (2014). Influence of the topography of brain damage on depression and fatigue in patients with multiple sclerosis. Multiple Sclerosis, 20, 192–201. doi: 10.1177/1352458513493684 CrossRef  Google Scholar 
  69. Greene, J., Nystrom, L.E., Engell, A.D., Darley, J.M., & Cohen, J.D. (2004). The neural bases of cognitive conflict and control in moral judgment. Neuron, 44(22), 389–400. CrossRef  Google Scholar 
  70. Greene, J., Sommerville, R.B., Nystrom, L.E., Darley, J.M., & Cohen, J.D. (2001). An fMRI investigation of emotional engagement in moral judgment. Science, 293(5537), 2105–2108. CrossRef  Google Scholar  PubMed 
  71. Grynberg, D., Chang, B., Corneille, O., Maurage, P., Vermeulen, N., Berthoz, S., & Luminet, O. (2012). Alexithymia and the processing of emotional facial expressions (EFEs): Systematic review, unanswered questions and further perspectives. PLoS One, 7(8), e42429. doi: 10.1371/journal.pone.0042429 CrossRef  Google Scholar  PubMed 
  72. Habel, U., Klein, M., Kellermann, T., Shah, N.J., & Schneider, F. (2005). Same or different? Neural correlates of happy and sad mood in healthy males. Neuroimage, 26(1), 206–214. CrossRef  Google Scholar  PubMed 
  73. Happé, F.G.E., Winner, E., & Brownell, H. (1998). The getting of wisdom: Theory of mind in old age. Developmental Psychology, 34(2), 358–362. CrossRef  Google Scholar  PubMed 
  74. Haxby, J.V., Hoffman, E.A., & Gobbini, M.I. (2000). The distributed human neural system for face perception. Trends in Cognitive Sciences, 4(6), 223–233. CrossRef  Google Scholar  PubMed 
  75. Haxby, J.V., Hoffman, E.A., & Gobbini, M.I. (2002). Human neural systems for face recognition and social communication. Biological Psychiatry, 51(1), 59–67. CrossRef  Google Scholar  PubMed 
  76. Heikkinen, J., Jansson-Verkasalo, E., Toivanen, J., Suominen, K., Vayrynen, E., Moilanen, I., & Seppanen, T. (2010). Perception of basic emotions from speech prosody in adolescents with Asperger’s syndrome. Logopedics, Phoniatrics, Vocology, 35(3), 113–120. doi: 10.3109/14015430903311184 CrossRef  Google Scholar  PubMed 
  77. Henry, J.D., Phillips, L.H., Beatty, W.W., McDonald, S., Longley, W.A., Joscelyne, A., & Rendell, P.G. (2009). Evidence for deficits in facial affect recognition and Theory of Mind in multiple sclerosis. Journal of the International Neuropsychological Society, 15(2), 277–285. doi: 10.1017/S1355617709090195 CrossRef  Google Scholar  PubMed 
  78. Henry, A., Tourbah, A., Chaunu, M.-P., Rumbach, L., Montreuil, M., & Bakchine, S. (2011). Social cognition impairments in relapsing remitting multiple sclerosis. Journal of the International Neuropsychological Society, 17(6), 1122–1131. doi: 10.1017/S1355617711001147 CrossRef  Google Scholar  PubMed 
  79. Henry, J.D., von Hippel, W., Molenberghs, P., Lee, T., & Sachdev, P.S. (2016). Clinical assessment of social cognitive function in neurological disorders. Nature Reviews Neurology, 12(1), 28–39. doi: 10.1038/nrneurol.2015.229 CrossRef  Google Scholar  PubMed 
  80. Herold, R., Feldmann, A., Simon, M., Tényi, T., Kövér, F., Nagy, F., & Fekete, S. (2009). Regional gray matter reduction and theory of mind deficit in the early phase of schizophrenia: A voxel-based morphometric study. Acta Psychiatrica Scandinavica, 119(3), 199–208. CrossRef  Google Scholar 
  81. Hogan, R. (1969). Development of an empathy scale. Journal of Consulting and Clinical Psychology, 33(3), 307–316. CrossRef  Google Scholar  PubMed 
  82. Ihme, K., Dannlowski, U., Lichev, V., Stuhrmann, A., Grotegerd, D., Rosenberg, N., & Suslow, T. (2013). Alexithymia is related to differences in gray matter volume: A voxelbased morphometry study. Brain Research, 1491, 60–67. doi: 10.1016/j.brainres.2012.10.044 CrossRef  Google Scholar 
  83. Jehna, M., Langkammer, C., Wallner-Blazek, M., Neuper, C., Loitfelder, M., Ropele, S., & Enzinger, C. (2011). Cognitively preserved MS patients demonstrate functional differences in processing neutral and emotional faces. Brain Imaging and Behavior, 5(4), 241–251. doi: 10.1007/s11682-011-9128-1 CrossRef  Google Scholar  PubMed 
  84. Jehna, M., Neuper, C., Ischebeck, A., Loitfelder, M., Ropele, S., Langkammer, C., & Enzinger, C. (2011). The functional correlates of face perception and recognition of emotional facial expressions as evidenced by fMRI. Brain Research, 1393, 73–83. doi: 10.1016/j.brainres.2011.04.007 CrossRef  Google Scholar  PubMed 
  85. Jehna, M., Neuper, C., Petrovic, K., Wallner-Blazek, M., Schmidt, R., Fuchs, S., & Enzinger, C. (2010). An exploratory study on emotion recognition in patients with a clinically isolated syndrome and multiple sclerosis. Clinical Neurology and Neurosurgery, 112(6), 482–484. doi: 10.1016/j.clineuro.2010.03.020 CrossRef  Google Scholar  PubMed 
  86. Julian, L.J., Vella, L., Vollmer, T., Hadjimichael, O., & Mohr, D.C. (2008). Employment in multiple sclerosis. Exiting and reentering the work force. Journal of Neurology, 255(9), 1354–1360. doi: 10.1007/s00415-008-0910-y CrossRef  Google Scholar 
  87. Kano, M., Fukudo, S., Gyoba, J., Kamachi, M., Tagawa, M., Mochizuki, H., & Yanai, K. (2003). Specific brain processing of facial expressions in people with alexithymia: An H2 15O-PET study. Brain, 126(Pt 6), 1474–1484. CrossRef  Google Scholar  PubMed 
  88. Kanwisher, N., & Yovel, G. (2006). The fusiform face area: A cortical region specialized for the perception of faces. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1476), 2109–2128. CrossRef  Google Scholar  PubMed 
  89. Kesselring, J., & Klement, U. (2001). Cognitive and affective disturbances in multiple sclerosis. Journal of Neurology, 248(3), 180–183. CrossRef  Google Scholar  PubMed 
  90. Kessler, H., Bayerl, P., Deighton, R., & Traue, H. (2002). Facially Expressed Emotion Labeling (FEEL): PC-gestützer Test zur Emotionserkennung. Verhaltenstherapie und Verhaltensmedizin, 23, 297–306. Google Scholar 
  91. Knight, M., & Mather, M. (2013). Look out-it’s your off-peak time of day! Time of day matters more for alerting than for orienting or executive attention. Experimental Aging Research, 39(3), 305–321. doi: 10.1080/0361073X.2013.779197 CrossRef  Google Scholar  PubMed 
  92. Koelkebeck, K., Abdel-Hamid, M., Ohrmann, P., & Brune, M. (2008). Theory of mind in schizophrenia: Clinical aspects and empirical research. Fortschritte der Neurologie Psychiatrie, 76(10), 573–582. doi: 10.1055/s-2008-1038250 CrossRef  Google Scholar  PubMed 
  93. Kraemer, M., Herold, M., Uekermann, J., Kis, B., Daum, I., Wiltfang, J., & . . .Abdel-Hamid, M. (2013). Perception of affective prosody in patients at an early stage of relapsing-remitting multiple sclerosis. Journal of Neuropsychology, 7(1), 91–106. doi: 10.1111/j.1748-6653.2012.02037.x CrossRef  Google Scholar  PubMed 
  94. Kraemer, M., Herold, M., Uekermann, J., Kis, B., Wiltfang, J., Daum, I., & Abdel-Hamid, M. (2013). Theory of mind and empathy in patients at an early stage of relapsing remitting multiple sclerosis. Clinical Neurology and Neurosurgery, 115(7), 1016–1022. doi: 10.1016/j.clineuro.2012.10.027 CrossRef  Google Scholar  PubMed 
  95. Krause, M., Wendt, J., Dressel, A., Berneiser, J., Kessler, C., Hamm, A.O., & Lotze, M. (2009). Prefrontal function associated with impaired emotion recognition in patients with multiple sclerosis. Behavioural Brain Research, 205(1), 280–285. doi: 10.1016/j.bbr.2009.08.009 CrossRef  Google Scholar  PubMed 
  96. Kuperberg, G.R., Broome, M.R., McGuire, P.K., David, A.S., Eddy, M., Ozawa, F., & Fischl, B. (2003). Regionally localized thinning of the cerebral cortex in schizophrenia. Archives of General Psychiatry, 60(9), 878–888. CrossRef  Google Scholar 
  97. Kurtzke, J.F. (1983). Rating neurological impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology, 33(11), 1444–1452. CrossRef  Google Scholar 
  98. Kuzmanovic, B., Bente, G., von Cramon, D.Y., Schilbach, L., Tittgemeyer, M., & Vogeley, K. (2012). Imaging first impressions: Distinct neural processing of verbal and nonverbal social information. Neuroimage, 60(1), 179–188. doi: 10.1016/j.neuroimage.2011.12.046 CrossRef  Google Scholar  PubMed 
  99. LaBar, K.S., Crupain, M.J., Voyvodic, J.T., & McCarthy, G. (2003). Dynamic perception of facial affect and identity in the human brain. Cerebral Cortex, 13(10), 1023–1033. CrossRef  Google Scholar 
  100. Lang, P.J., Bradley, M.M., & Cuthbert, B.N. (2005). International affective picture system (IAPS): Affective ratings of pictures and instruction manual. Technical report A-6. Gainesville, FL: University of Florida. Google Scholar 
  101. Langdon, D.W. (2011). Cognition in multiple sclerosis. emotion. Current Opinion in Neurology, 24(3), 244–249. doi: 10.1097/WCO.0b013e328346a43b CrossRef  Google Scholar 
  102. Leppanen, J.M. (2006). Emotional information processing in mood disorders: A review of behavioral and neuroimaging findings. Current Opinion in Psychiatry, 19(1), 34–39. CrossRef  Google Scholar 
  103. Leslie, K.R., Johnson-Frey, S.H., & Grafton, S.T. (2004). Functional imaging of face and hand imitation: Towards a motor theory of empathy. Neuroimage, 21(2), 601–607. CrossRef  Google Scholar 
  104. Maddock, R.J., Garrett, A.S., & Buonocore, M.H. (2003). Posterior cingulate cortex activation by emotional words: fMRI evidence from a valence decision task. Human Brain Mapping, 18(1), 30–41. CrossRef  Google Scholar  PubMed 
  105. Mainero, C., Caramia, F., Pozzilli, C., Pisani, A., Pestalozza, I., Borriello, G., & Pantano, P. (2004). fMRI evidence of brain reorganization during attention and memory tasks in multiple sclerosis. Neuroimage, 21(3), 858–867. CrossRef  Google Scholar  PubMed 
  106. Mainero, C., Pantano, P., Caramia, F., & Pozzilli, C. (2006). Brain reorganization during attention and memory tasks in multiple sclerosis: Insights from functional MRI studies. Journal of the Neurological Sciences, 245(1–2), 93–98. CrossRef  Google Scholar  PubMed 
  107. McDonald, S., Bornhofen, C., Shum, D., Long, E., Saunders, C., & Neulinger, K. (2006). Reliability and validity of The Awareness of Social Inference Test (TASIT): A clinical test of social perception. Disability and Rehabilitation, 28(24), 1529–1542. CrossRef  Google Scholar  PubMed 
  108. McDonald, S., Flanagan, S., Rollins, J., & Kinch, J. (2003). TASIT: A new clinical tool for assessing social perception after traumatic brain injury. The Journal of Head Trauma Rehabilitation, 18(3), 219–238. CrossRef  Google Scholar  PubMed 
  109. Mike, A., Strammer, E., Aradi, M., Orsi, G., Perlaki, G., Hajnal, A., & Illes, Z. (2013). Disconnection mechanism and regional cortical atrophy contribute to impaired processing of facial expressions and theory of mind in multiple sclerosis: A structural MRI study. PLoS One, 8(12), e82422. doi: 10.1371/journal.pone.0082422 CrossRef  Google Scholar  PubMed 
  110. Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G., & Group PRISMA. (2009). Preferred reporting items for systematic reviews and metaanalyses: The PRISMA statement. BMJ, 339, b2535. CrossRef  Google Scholar 
  111. Mohr, D.C., & Cox, D. (2001). Multiple sclerosis: Empirical literature for the clinical health psychologist. Journal of Clinical Psychology, 57(4), 479–499. CrossRef  Google Scholar  PubMed 
  112. Montel, S.R., & Bungener, C. (2007). Coping and quality of life in one hundred and thirty-five subjects with multiple sclerosis. Multiple Sclerosis, 13(3), 393–401. doi: 10.1177/1352458506071170 CrossRef  Google Scholar  PubMed 
  113. Morgen, K., Kadom, N., Sawaki, L., Tessitore, A., Ohayon, J., McFarland, H., & Cohen, L.G. (2004). Training-dependent plasticity in patients with multiple sclerosis. Brain, 127(Pt 11), 2506–2517. CrossRef  Google Scholar  PubMed 
  114. Ouellet, J., Scherzer, P.B., Rouleau, I., Metras, P., Bertrand-Gauvin, C., Djerroud, N., & Duquette, P. (2010). Assessment of social cognition in patients with multiple sclerosis. Journal of the International Neuropsychological Society, 16(2), 287–296. doi: 10.1017/S1355617709991329 CrossRef  Google Scholar  PubMed 
  115. Pakenham, K.I., & Cox, S. (2009). The dimensional structure of benefit finding in multiple sclerosis and relations with positive and negative adjustment: A longitudinal study. Psychology and Health, 24(4), 373–393. doi: 10.1080/08870440701832592 CrossRef  Google Scholar  PubMed 
  116. Palermo, R., & Rhodes, G. (2007). Are you always on my mind? A review of how face perception and attention interact. Neuropsychologia, 45(1), 75–92. CrossRef  Google Scholar 
  117. Pantano, P., Iannetti, G.D., Caramia, F., Mainero, C., Di Legge, S., Bozzao, L., & Lenzi, G.L. (2002). Cortical motor reorganization after a single clinical attack of multiple sclerosis. Brain, 125(Pt 7), 1607–1615. CrossRef  Google Scholar  PubMed 
  118. Pantano, P., Mainero, C., Lenzi, D., Caramia, F., Iannetti, G.D., Piattella, M.C., & Pozzilli, C. (2005). A longitudinal fMRI study on motor activity in patients with multiple sclerosis. Brain, 128(Pt 9), 2146–2153. CrossRef  Google Scholar  PubMed 
  119. Parada-Fernández, P., Oliva-Macias, M., Amayra, I., Lopez-Paz, J.F., Lazaro, E., Martinez, O., & Perez, M. (2015). Accuracy and reaction time in recognition of facial emotions in people with multiple sclerosis. Revue Neurologique, 61(10), 433–440. Google Scholar  PubMed 
  120. Park, H.J., Kim, J.J., Lee, S.K., Seok, J.H., Chun, J., Kim, D.I., &Lee, J.D. (2008). Corpus callosal connection mapping using cortical gray matter parcellation and DT-MRI. Human Brain Mapping, 29(5), 503–516. CrossRef  Google Scholar  PubMed 
  121. Passamonti, L., Cerasa, A., Liguori, M., Gioia, M., Valentino, P., Nisticò, R., & Fera, F. (2009). Neurobiological mechanisms underlying emotional processing in relapsing-remitting multiple sclerosis. Brain, 132(Pt 12), 3380–3391. doi: 10.1093/brain/awp095 CrossRef  Google Scholar  PubMed 
  122. Persad, S.M., & Polivy, J. (1993). Differences between depressed and nondepressed individuals in the recognition of and response to facial emotional cues. Journal of Abnormal Psychology, 102(3), 358–368. CrossRef  Google Scholar  PubMed 
  123. Pessoa, L. (2008). On the relationship between emotion and cognition. Nature Reviews Neuroscience, 9(2), 148–158. CrossRef  Google Scholar  PubMed 
  124. Pfleger, C.C., Flachs, E.M., & Koch-Henriksen, N. (2010). Social consequences of multiple sclerosis. Part 2. Divorce and separation: A historical prospective cohort study. Multiple Sclerosis, 16(7), 878–882. doi: 10.1177/1352458510370978 CrossRef  Google Scholar  PubMed 
  125. Phillips, L., Henry, J., Scott, C., Summers, F., Whyte, M., & Cook, M. (2011). Specific impairments of emotion perception in multiple sclerosis. Neuropsychology, 25(1), 131–136. doi: 10.1037/a0020752 CrossRef  Google Scholar 
  126. Phillips, L.H., Saldias, A., McCarrey, A., Henry, J.D., Scott, C., Summers, F., & Whyte, M. (2009). Attentional lapses, emotional regulation and quality of life in multiple sclerosis. British Journal of Clinical Psychology, 48(Pt 1), 101–106. doi: 10.1348/014466508X379566 CrossRef  Google Scholar  PubMed 
  127. Pinto, C., Gomes, F., Moreira, I., Rosa, B., Santos, E., Silva, A.M., &Cavaco, S. (2012). Emotion recognition in multiple sclerosis. Journal of Eye Tracking, Visual Cognition and Emotion, 2(1), 76–81. Google Scholar 
  128. Poder, K., Ghatavi, K., Fisk, J.D., Campbell, T.L., Kisely, S., Sarty, I., & Bhan, V. (2009). Social anxiety in a multiple sclerosis clinic population. Multiple Sclerosis, 15(3), 393–398. doi: 10.1177/1352458508099143 CrossRef  Google Scholar 
  129. Pöttgen, J., Dziobek, I., Reh, S., Heesen, C., & Gold, S.M. (2013). Impaired social cognition in multiple sclerosis. Journal of Neurology, Neurosurgery, and Psychiatry, 84(5), 523–528. doi: 10.1136/jnnp-2012-304157 CrossRef  Google Scholar 
  130. Prochnow, D., Donell, J., Schäfer, R., Jörgens, S., Hartung, H., Franz, M., & Seitz, R. (2011). Alexithymia and impaired facial affect recognition in multiple sclerosis. Journal of Neurology, 258(9), 1683–1688. doi: 10.1007/s00415-011-6002-4 CrossRef  Google Scholar 
  131. Rao, S.M., Leo, G.J., Bernardin, L., & Unverzagt, F. (1991). Cognitive dysfunction in multiple sclerosis. I. Frequency, patterns, and prediction. Neurology, 41(5), 685–691. CrossRef  Google Scholar 
  132. Rao, S.M., Leo, G.J., Ellington, L., Nauertz, T., Bernardin, L., & Unverzagt, F. (1991). Cognitive dysfunction in multiple sclerosis. II. Impact on employment and social functioning. Neurology, 41(5), 692–696. Google Scholar 
  133. Roca, M., Manes, F., Gleichgerrcht, E., Ibáñez, A., González de Toledo, M.E., Marenco, V., & Sinay, V. (2014). Cognitive but not affective theory of mind deficits in mild relapsing-remitting multiple sclerosis. Cognitive and Behavioral Neurology, 27(1), 25–30. doi: 10.1097/WNN.0000000000000017 CrossRef  Google Scholar 
  134. Rocca, M.A., Absinta, M., Ghezzi, A., Moiola, L., Comi, G., & Filippi, M. (2009). Is a preserved functional reserve a mechanism limiting clinical impairment in pediatric MS patients? Human Brain Mapping, 30(9), 2844–2851. doi: 10.1002/hbm.20712 CrossRef  Google Scholar  PubMed 
  135. Ross, E.D., Thompson, R.D., & Yenkosky, J. (1997). Lateralization of affective prosody in brain and the callosal integration of hemispheric language functions. Brain and Language, 56(1), 27–54. doi: 10.1006/brln.1997.1731 CrossRef  Google Scholar 
  136. Rovaris, M., Comi, G., & Filippi, M. (2001). The role of non-conventional MR techniques to study multiple sclerosis patients. Journal of the Neurological Sciences, 186(Suppl. 1), S3–S9. CrossRef  Google Scholar  PubMed 
  137. Rowe, A.D., Bullock, P.R., Polkey, C.E., & Morris, R.G. (2001). Theory of mind impairments and their relationship to executive functioning following frontal lobe excisions. Brain, 124(Pt 3), 600–616. CrossRef  Google Scholar  PubMed 
  138. Ruby, P., & Decety, J. (2004). How would you feel versus how do you think she would feel? A neuroimaging study of perspective-taking with social emotions. Journal of Cognitive Neuroscience, 16(6), 988–999. CrossRef  Google Scholar 
  139. Samson, D., Apperly, I.A., Chiavarino, C., & Humphreys, G.W. (2004). Left temporoparietal junction is necessary for representing someone else’s belief. Nature Neuroscience, 7(5), 499–500. CrossRef  Google Scholar  PubMed 
  140. Sanfilipo, M.P., Benedict, R.H., Weinstock-Guttman, B., & Bakshi, R. (2006). Gray and white matter brain atrophy and neuropsychological impairment in multiple sclerosis. Neurology, 66(5), 685–692. doi: 10.1212/01.wnl.0000201238.93586.d9 CrossRef  Google Scholar  PubMed 
  141. Schulte-Rüther, M., Greimel, E., Markowitsch, H.J., Kamp-Becker, I., Remschmidt, H., Fink, G.R., & Piefke, M. (2011). Dysfunctions in brain networks supporting empathy: An fMRI study in adults with autism spectrum disorders. Social Neuroscience, 6(1), 1–21. doi: 10.1080/17470911003708032 CrossRef  Google Scholar 
  142. Sebastian, C.L., Fontaine, N.M., Bird, G., Blakemore, S.J., De Brito, S.A., McCrory, E.J., &Viding, E. (2012). Neural processing associated with cognitive and affective Theory of Mind in adolescents and adults. Social Cognitive and Affective Neuroscience, 7(1), 53–63. doi: 10.1093/scan/nsr023 CrossRef  Google Scholar 
  143. Segal, B.M., & Stüve, O. (2016). Primary progressive multiple sclerosis--why we are failing. Lancet, 387(10023), 1032–1034. CrossRef  Google Scholar  PubMed 
  144. Seitz, R.J., Nickel, J., & Azari, N.P. (2006). Functional modularity of the medial prefrontal cortex: Involvement in human empathy. Neuropsychology, 20(6), 743–751. CrossRef  Google Scholar  PubMed 
  145. Shamay-Tsoory, S.G., & Aharon-Peretz, J. (2007). Dissociable prefrontal networks for cognitive and affective theory of mind: A lesion study. Neuropsychologia, 45(13), 3054–3067. CrossRef  Google Scholar 
  146. Skevington, S.M., Lotfy, M., & O’Connell, K.A. (2004). The World Health Organisation’s WHOQOL-BREF quality of life assessment: Psychometric properties and results of the international field trial. A report from the WHOQOL group. Quality of Life Research, 13(2), 299–310. CrossRef  Google Scholar 
  147. Skowronski, J.J., & Carlston, D.E. (1989). Negativity and extremity biases in impression formation: A review of explanations. Psychological Bulletin, 105, 131–142. CrossRef  Google Scholar 
  148. Staffen, W., Mair, A., Zauner, H., Unterrainer, J., Niederhofer, H., Kutzelnigg, A., & Ladurner, G. (2002). Cognitive function and fMRI in patients with multiple sclerosis: Evidence for compensatory cortical activation during an attention task. Brain, 125(Pt 6), 1275–1282. CrossRef  Google Scholar  PubMed 
  149. Stern, Y. (2012). Cognitive reserve in ageing and Alzheimer’s disease. The Lancet Neurology, 11(11), 1006–1012. CrossRef  Google Scholar  PubMed 
  150. Stone, V.E., Baron-Cohen, S., & Knight, R.T. (1998). Frontal lobe contribution to theory of mind. Journal of Cognitive Neuroscience, 10(5), 640–656. CrossRef  Google Scholar 
  151. Sullivan, S., & Ruffman, T. (2004). Social understanding: How does it fare with advancing years? British Journal of Psychology, 95(Pt 1), 1–18. CrossRef  Google Scholar 
  152. Sumowski, J.F., Wylie, G.R., Deluca, J., & Chiaravalloti, N. (2009). Intellectual enrichment is linked to cerebral efficiency in multiple sclerosis: Functional magnetic resonance imaging evidence for cognitive reserve. Brain, 133(Pt 2), 362–374. doi: 10.1093/brain/awp307 CrossRef  Google Scholar  PubMed 
  153. Sumowski, J.F., & Leavitt, V.M. (2013). Cognitive reserve in multiple sclerosis. Multiple Sclerosis, 19(9), 1122–1127. CrossRef  Google Scholar 
  154. Suslow, T., Dannlowski, U., Lalee-Mentzel, J., Donges, U.S., Arolt, V., & Kersting, A. (2004). Spatial processing of facial emotion in patients with unipolar depression: A longitudinal study. Journal of Affective Disorders, 83(1), 59–63. CrossRef  Google Scholar 
  155. Sweet, L.H., Rao, S.M., Primeau, M., Durgerian, S., & Cohen, R.A. (2006). Functional magnetic resonance imaging response to increased verbal working memory demands among patients with multiple sclerosis. Human Brain Mapping, 27(1), 28–36. CrossRef  Google Scholar  PubMed 
  156. Tamietto, M., & de Gelder, B. (2010). Neural bases of the non-conscious perception of emotional signals. Nature Reviews Neuroscience, 11(10), 697–709. CrossRef  Google Scholar  PubMed 
  157. Tangney, J.P., Stuewig, J., & Mashek, D.J. (2007). Moral emotions and moral behavior. Annual Review of Psychology, 58, 345–372. CrossRef  Google Scholar  PubMed 
  158. Tottenham, N., Tanaka, J., Leon, A., McCarry, T., Nurse, M., Hare, T., & Nelson, C. (2009). The NimStim set of facial expressions: Judgments from untrained research participants. Psychiatry Research, 168(3), 242–249. doi: 10.1016/j.psychres.2008.05.006 CrossRef  Google Scholar  PubMed 
  159. Uekermann, J., Abdel-Hamid, M., Lehmkamper, C., Vollmoeller, W., & Daum, I. (2008). Perception of affective prosody in major depression: A link to executive functions? Journal of the International Neuropsychological Society, 14(4), 552–561. doi: 10.1017/S1355617708080740 CrossRef  Google Scholar  PubMed 
  160. Uekermann, J., Channon, S., Lehmkamper, C., Abdel-Hamid, M., Vollmoeller, W., & Daum, I. (2008). Executive function, mentalizing and humor in major depression. Journal of the International Neuropsychological Society, 14(1), 55–62. doi: 10.1017/S1355617708080016 Google Scholar  PubMed 
  161. Uekermann, J., Channon, S., Winkel, K., Schlebusch, P., & Daum, I. (2007). Theory of Mind, humour processing and executive functioning in alcoholism. Addiction, 102(2), 232–240. doi: 10.1111/j.1360-0443.2006.01656.x CrossRef  Google Scholar  PubMed 
  162. Uekermann, J., & Daum, I. (2008). Social cognition in alcoholism: A link to prefrontal cortex dysfunction? Addiction, 103(5), 726–735. doi: 10.1111/j.1360-0443.2008.02157.x CrossRef  Google Scholar 
  163. Uekermann, J., Kraemer, M., Abdel-Hamid, M., Schimmelmann, B.G., Hebebrand, J., Daum, I., & Kis, B. (2010). Social cognition in attention-deficit hyperactivity disorder (ADHD). Neuroscience and Biobehavioral Reviews, 34(5), 734–743. doi: 10.1016/j.neubiorev.2009.10.009 CrossRef  Google Scholar 
  164. Van Kleef, G.A. (2009). How emotions regulate social life. The Emotions as Social Information (EASI) model. Current Directions in Psychological Sciences, 18, 184–188. CrossRef  Google Scholar 
  165. Vázquez-Marrufo, M., Galvao-Carmona, A., González-Rosa, J.J., Hidalgo-Muñoz, A.R., Borges, M., Ruiz-Peña, J.L., & Izquierdo, G. (2014). Neural correlates of alerting and orienting impairment in multiple sclerosis patients. PLoS One, 12(9), e97226. doi: 10.1371/journal.pone.0097226 CrossRef  Google Scholar 
  166. Vistoli, D., Brunet-Gouet, E., Baup-Bobin, E., Hardy-Bayle, M.C., & Passerieux, C. (2011). Anatomical and temporal architecture of Theory of Mind: A MEG insight into the early stages. Neuroimage, 54(2), 1406–1414. doi: 10.1016/j.neuroimage.2010.09.015 CrossRef  Google Scholar  PubMed 
  167. Vollm, B.A., Taylor, A.N., Richardson, P., Corcoran, R., Stirling, J., McKie, S., &Elliott, R. (2006). Neuronal correlates of theory of mind and empathy: A functional magnetic resonance imaging study in a nonverbal task. Neuroimage, 29(1), 90–98. CrossRef  Google Scholar 
  168. Vuilleumier, P., & Pourtois, G. (2007). Distributed and interactive brain mechanisms during emotion face perception: Evidence from functional neuroimaging. Neuropsychologia, 45(1), 174–194. CrossRef  Google Scholar  PubMed 
  169. Wegner, C., Filippi, M., Korteweg, T., Beckmann, C., Ciccarelli, O., De Stefano, N., & Matthews, P.M. (2008). Relating functional changes during hand movement to clinical parameters in patients with multiple sclerosis in a multi-centre fMRI study. European Journal of Neurology, 15(2), 113–122. doi: 10.1111/j.1468-1331.2007.02027.x CrossRef  Google Scholar 
  170. Wheaton, K.J., Thompson, J.C., Syngeniotis, A., Abbott, D.F., & Puce, A. (2004). Viewing the motion of human body parts activates different regions of premotor, temporal, and parietal cortex. Neuroimage, 22(1), 277–288. CrossRef  Google Scholar  PubMed 
  171. Williams, J.H. (2008). Self-other relations in social development and autism: Multiple roles for mirror neurons and other brain bases. Autism Research, 1(2), 73–90. doi: 10.1002/aur.15 CrossRef  Google Scholar 
  172. Wildgruber, D., Ackermann, H., Kreifelts, B., & Ethofer, T. (2006). Cerebral processing of linguistic and emotional prosody: fMRI studies. Progress in Brain Research, 156, 249–268. doi: 10.1016/S0079-6123(06)56013-3 CrossRef  Google Scholar 
  173. Wolkenstein, L., Schonenberg, M., Schirm, E., & Hautzinger, M. (2011). I can see what you feel, but I can’t deal with it: Impaired Theory of Mind in depression. Journal of Affective Disorders, 132(1-2), 104–111. doi: 10.1016/j.jad.2011.02.010 CrossRef  Google Scholar 
  174. Young, L., Camprodon, J.A., Hauser, M., Pascual-Leone, A., & Saxe, R. (2010). Disruption of the right temporoparietal junction with transcranial magnetic stimulation reduces the role of beliefs in moral judgments. Proceedings of the National Academy of Sciences of the United States of America, 107(15), 6753–6758. doi: 10.1073/pnas.0914826107 CrossRef  Google Scholar 
  175. Young, A., Perrett, D., Calder, A., Sprengelmeyer, R., & Ekman, P. (2002). Facial expressions of emotion - Stimuli and tests(Software Manual v2.1 Ed.), Bury St Edmunds, England: Thames Valley Test Company. Google Scholar 
  176. Zaki, J., Hennigan, K., Weber, J., & Ochsner, K.N. (2010). Social cognitive conflict resolution: Contributions of domain-general and domain-specific neural systems. Journal of Neuroscience, 30(25), 8481–8488. doi: 10.1523/JNEUROSCI.0382-10.2010 CrossRef  Google Scholar  PubMed