3.5 CE Credits: JINS Special Issue: INS 50th Anniversary - Theory & Practice (JINS 23:9-10, 2017): CE Bundle 1

- Describe current knowledge of brain lateralization and asymmetry based on recent genetic and neuroimaging studies.
- Discuss how understanding of affect influences theories of cognition.
- Explain different theoretical viewpoints about the role of the medial temporal lobes (MTL) in memory and other cognitive domains.
- Discuss the history and latest findings regarding how the brain processes language
- Critique the relationship between function and anatomy, and develop clear operational definitions, for the category of brain abilities considered "frontal" or " executive" functions.
- Describe how cognition impacts movement and the underlying neuroanatomy involved.
- List important factors that can influence neuropsychological test interpretation.
Target Audience: | Intermediate |
---|---|
Availability: | Date Available: 2018-03-19 |
You may obtain CE for this JINS package at any time. | |
Offered for CE | Yes |
Cost | Members $35 |
Non-Members $52.50 | |
Refund Policy | This JINS package is not eligible for refunds |
CE Credits | 3.5 |
The International Neuropsychological Society is celebrating its 50th anniversary (1967-2017). Over the course of these 50 years, members of the society have made great strides in advancing our knowledge of the workings of the human brain both in health and in disease. For the past 2 decades, many of these advances have appeared in the society’s flagship scientific outlet, the Journal of the International Neuropsychological Society. To commemorate the INS 50th anniversary, the two previous JINS editors, Igor Grant and Kathleen Haaland, joined the current editor, Stephen Rao, in organizing this special double issue of JINS. We have invited some of our leading senior investigators, most of whom have served in leadership positions in the INS, to write reviews in their areas of expertise. These reviews are designed to highlight scientific discoveries that have contributed to progress in the field of neuropsychology over the past 50 years. The authors were instructed to selectively discuss landmark discoveries that have had a lasting impact in advancing scientific knowledge rather than to provide comprehensive literature reviews. In addition, the authors were asked to provide their predictions regarding scientific directions of their field over the coming decade.
The papers reflect in a remarkable way the evolution of neuropsychology over the past 5 decades. There is a movement from viewing neurocognitive change from a static anatomic perspective to one that embraces the notion of functional connectivity within neural circuits, and considers how imbalances in circuitry crosstalk may be reflected in the kinds of processes that we neuropsychologists study, for example, executive function, components of memory and attention, and so forth. The field of neuropsychology now interacts with technological advances in structural and functional brain imaging, electrophysiological methods, fluid biomarkers (e.g., cerebral spinal fluid), and genetics, to name a few. The increased emphasis on observational longitudinal designs has provided a more comprehensive understanding of the evolution of neuropsychological disorders. Finally, while neuropsychology has traditionally focused on assessment, each of these reviews also highlight advances made in the treatment of neuropsychological disorders.
We have organized this special issue into four sections: Brain Systems and Assessment, Neurological Disorders, Neuropsychiatric Disorders, and Pediatric Disorders. In the following sections of this introduction, we highlight some of the key take-home messages from these scholarly reviews. It is important to note that all of these invited reviews were peer reviewed and required multiple revisions before acceptance. Another caveat is that we do not pretend to have covered the entire scope of the scientific underpinnings of neuropsychology and we are sure that we have omitted several key research areas in our diverse field. Likewise, we recognize that only a small percentage of our thought leaders in neuropsychology were able to be invited to contribute to this special issue.
In this section, Corballis emphasizes that hemispheric asymmetry exists in great apes as well as humans (although to a lesser extent in the former), is characterized by significant individual variability and complex genetic influences, and encompasses a broader range of functions and associated neural networks than initially thought before more recent neuroimaging studies.
McDonald emphasizes significant developments in our understanding of emotion, including delineation of the neuroanatomical substrates for different aspects of emotion, the influence of emotion on cognitive processes, and the clinical implications of emotion, which necessitate the need to directly examine emotion clinically using newly developed normative procedures.
Verfaellie and Keane discuss a shift toward a more nuanced understanding of the medial temporal lobes (MTL) in human memory and amnesia over the past 30 years. On the one hand, this body of evidence has highlighted that not all types of memory are impaired in patients with MTL lesions. On the other hand, this research has made apparent that the role of the MTL extends beyond the domain of long-term memory, to include working memory, perception, and future thinking.
Dronkers and Baldo emphasize that the study of language has had a major impact on our understanding of brain-behavior relationships. This paper highlights well-known historical case studies with updates using structural MRI and functional imaging in group studies which show that language, like other complex cognitive processes, is dependent upon neural systems rather than single cortical loci.
Stuss and Burgess review how our knowledge of prefrontal functions in the context of neuropsychological assessment has been transformed over the past 50 years with key themes, including development of theoretical frameworks that address the role of prefrontal systems in the organization of human cognition, the importance of naturalistic tests, the emerging integration of functional imaging into clinical practice, and how we might develop new ways to measure executive function to fill existing gaps.
Haaland, Dum, Mutha, Strick, and Troster, a multidisciplinary group of experts in movement and movement disorders, summarize the influence of animal and human studies in showing that the corticospinal tract includes projections from multiple premotor regions as well as the motor cortex, that cognition strongly impacts even what appear to be simple motor skills, and that differential connectivity among cortical, cerebellar, and striatal regions influences normal movement and impairment with movement disorders and cortical lesions.
Casaletto and Heaton identify historical pioneers and their approaches to neuropsychological assessment as well as factors that have influenced neuropsychological interpretation (e.g., normative standards, cultural considerations, quantifying longitudinal change). They also emphasize the importance of enhancing ecological validity and ways that technological advances have impacted assessment.
Hermann, Loring, and Wilson discuss five major paradigm shifts that have occurred within the neuropsychology of epilepsy, including departure from syndrome-specific pathophysiology, bidirectional comorbidities, quality of life, surgical outcomes, and iatrogenic treatment effects. Unlike most other disorders evaluated by neuropsychologists, surgical interventions have played an important role. This review focuses on the neuropsychological consequences of different surgical interventions and the re-emergence of electroencephalography as an important research tool for probing cognitive dysfunction.
Yeates, Levin, and Ponsford highlight progress made through studies of traumatic brain injury in adults and children. The study focuses on contributions of advances in neuroimaging in characterizing the pathophysiology of traumatic brain injury, the impact of non-injury factors on outcomes (pre-morbid factors), and medical and non-medical interventions to improve outcomes.
Bondi, Edmonds, and Salmon survey historical advances in Alzheimer’s disease, beginning with studies profiling the neuropsychological deficits associated with AD and its differentiation from other dementias, identification of specific cognitive mechanisms affected by neuropathological substrates, the shift in focus to the study of prodromal stages of neurodegenerative disease (mild cognitive impairment), and the rise of imaging and other biomarkers to characterize preclinical disease before the development of significant cognitive decline.
Benedict, DeLuca, Enzinger, Geurts, Krupp, and Rao highlight advances made in the areas of neuropathology, neuroimaging, diagnosis, and treatment that pertain to the neuropsychological aspects of multiple sclerosis (MS). This review focuses on the discovery that MS produces pathological lesions of gray matter that have consequences for cognitive functions, the use of multimodal imaging that integrates structural and functional imaging methods to better understand cognitive test performance and functional reserve, screening and comprehensive assessment of cognitive disorders including pediatric MS, and outcome studies in cognitive rehabilitation.
Sullivan shows us how early careful observations of neuropsychological patterns in alcoholism led to modern neuroimaging confirmations and deepening understanding not only of the structural neuroanatomy underlying alcoholism, but also to new appreciation of functional connectivity disruptions. Ongoing studies now hope to relate such functional connectivity changes not only to specific cognitive profiles but also to related deficits in self-regulation, impulse control, and reward processing that are linked to such neurocognitive deficits.
Saloner and Cysique summarize the progress from earliest reports of neurocognitive changes, first reported in 1987, to the delineation of the specific syndromes of HIV-associated neurocognitive disorders (HAND). The authors demonstrate that neuropsychology has led the way in appreciating that the brain continues to be affected by the HIV process despite good control of virus by modern antiretroviral treatments; and they note that the consequences of these persisting mild cognitive disorders include disturbance in quality of life and everyday functioning in those affected by HIV.
Waters and Mayberg present depression as a failure in the coordination of distributed frontal networks, and discuss how differential functional brain responses to different therapies, for example, pharamacotherapy versus cognitive behavioral therapy (CBT), provide for a better understanding of the component elements of depression. They suggest that increases in adaptive functionality of dorsal frontal networks controlling attention and executive function may be specifically targeted by CBT, whereas antidepressant drugs may reduce the hyper-reactivity of ventral corticolimbic structures.
Seidman and Mirsky note that the view of schizophrenia has shifted from one of “functional psychosis” (i.e., with no known brain substrate) to that of a neurodevelopmental disorder. Neuropsychological deficits, once viewed as the result of psychosis, are now thought to be a prodrome of the disorder, since they are found many years before the onset of symptoms and occur in biological relatives who never develop psychosis. They note a steady increase in convergence of neuropsychological, structural, and functional brain mapping toward understanding of the neurodevelopmental events that lead to these symptoms, such as perinatal insults, abnormal neural network organization, faulty pruning, and genetic alterations.
Gonzalez, Pacheco-Colón, Duperrouzel, and Hawes address progress in the field of cannabis use, which was just being born 50 years ago when the INS was founded. The earliest reports were a few experimental cognitive studies and case reports. Now, there is a vast neuropsychological literature and, as with studies on alcoholism and depression, an increased emphasis on structural-functional brain correlates and their relation to neurodevelopmental outcomes. While they note that evidence for persisting adverse effects of moderate marijuana use by adults is inconclusive, there is increasing concern that marijuana may not be so benign in children, adolescents, and extremely heavy cannabis users.
Fein and Helt indicate that the pace of research in autism has accelerated moving from an initial focus on behavior and cognition to advances associated with the incorporation of imaging and genetics. Despite these recent advances, a coherent picture of the syndrome at either a phenotypic or biological level has not emerged. They provide a roadmap for future progress, in which studies include individuals defined by social impairment without regard to repetitive behaviors to form narrowly defined subtypes, focus on characteristics that are less influenced by environmental factors, study children as early as possible thereby minimizing environmental influence, emphasize the longitudinal course, examine the relationship between specific subtypes and environmental risk factors, distinguish between what participants can do and what they typically do, and aggregate large data sets across sites.
Mahone and Denckla review the key literature pertaining to the neuropsychology of attention-deficit hyperactivity disorder (ADHD) over the past 35 years. These include the evolution of the diagnosis, influential theories, landmark treatment studies, and advances in brain mapping techniques, including anatomic, task activation and resting state fMRI, and diffusion tensor imaging. Challenges associated with studying and treating a heterogeneous neurodevelopmental disorder such as ADHD are described, along with an emphasis on associated disorders and conditions and special populations.
Fletcher and Grigorenko make the case that experimental trials of interventions focused on improving academic skills and addressing comorbid conditions are most effective for diagnosing and treating learning disabilities with a particular focus on reading disability. They conclude that neuropsychological assessment needs to move away from a focus on delineation of cognitive skills toward performance-based assessments of academic achievement and comorbid conditions, along with intervention responses that lead directly to evidence-based treatment plans. Finally, they emphasize that the path to further understanding learning disabilities will be strongly influenced by interdisciplinary research that includes the neuropsychologist and links data from cognitive neuroscience with assessment and treatment of these disorders.
Upon reflection of the articles contained within this special issue, we believe members of the INS will be proud of the many scientific accomplishments that have occurred over the past 50 years of our society’s existence. We are also assured that the future will see even greater scientific innovation in the field of neuropsychology. We think you will agree.
On a closing sad note, Larry Seidman, an Associate Editor of JINS and a co-author of the review on schizophrenia in this special issue, died unexpectedly in September 2017. We will miss this valued friend and colleague, who has made such important discoveries in the neuropsychology of mental health research.
Hemispheric asymmetry is commonly viewed as a dual system, unique to humans, with the two sides of the human brain in complementary roles. To the contrary, modern researchshows that cerebral and behavioral asymmetries are widespread in the animal kingdom, and that the concept of duality is an oversimplification. The brain has many networksserving different functions; these are differentially lateralized, and involve many genes. Unlike the asymmetries of the internal organs, brain asymmetry is variable,with a significant minority of the population showing reversed asymmetries or the absence of asymmetry. This variability may underlie the divisions of labor and thespecializations that sustain social life. (JINS, 2017, 23, 710–718)
- Afzelius, B.A. (1976). A human syndrome caused by immotile cilia. Science, 193, 317–319. CrossRef Google Scholar PubMed
- Alcock, K.J., Passingham, R.E., Watkins, K.E., & Vargha-Khadem, F. (2000). Oral dyspraxia in inherited speech and language impairment. Brain & Language, 75, 17–33. CrossRef Google Scholar PubMed
- American Heritage Dictionary of the English Language, 4th edition (2008). New York: Houghton Mifflin. Google Scholar
- Andrew, R.J. (2002). Origins and evolution of lateralization. In L.J. Rogers & A.J. Andrew (Eds.), Comparative vertebrate lateralization (pp. 70–93). Cambridge: Cambridge University Press. CrossRef Google Scholar
- Annett, M. (2002). Handedness and brain asymmetry: The right shift theory. Hove, East Sussex, UK: Psychology Press. Google Scholar PubMed
- Arning, L., Ocklenburg, S., Schulz, S., Ness, V., Gerding, W.M., Hengstler, J.G., & Beste, C. (2013). PCSK6VNTR polymorphism is associated with degree of handedness but not direction of handedness. PLoS One, 8: e67251. http://dx.doi:10.1371/journal.pone.0067251 CrossRef Google Scholar
- Badzakova-Trajkov, G., Häberling, I.S., & Corballis, M.C. (2010). Cerebral asymmetries in monozygotic twins: An fMRI study. Neuropsychologia, 48, 3086–3093. http://doi:10.1016/j.neuropsychologia.2010.06.020 CrossRef Google Scholar PubMed
- Badzakova-Trajkov, G., Häberling, I.S., & Corballis, M.C. (2011). Magical ideation, creativity, handedness, and cerebral asymmetries: A combined behavioural and fMRI study. Neuropsychologia, 40, 2896–2903. http://doi:10.1016/j.neuropsychologia.2011.06.016 CrossRef Google Scholar
- Badzakova-Trajkov, G., Häberling, I.S., Roberts, R.P., & Corballis, M.C. (2010). Cerebral asymmetries: Complementary and independent processes. PLoS One, 5(3), e9682. http://doi:10.1371/journal.pone.0009682 CrossRef Google Scholar PubMed
- Barnett, K.J., & Corballis, M.C. (2002). Ambidexterity and magical ideation. Laterality, 7, 75–84. http://dx.doi:10.1080/13576500143000131 CrossRef Google Scholar PubMed
- Bauer, R.H. (1993). Lateralization of neural control for vocalization by the frog (Rana pipiens). Psychobiology, 21, 243–248. Google Scholar
- Bogen, J.E. (1969). The other side of the brain II: An appositional mind. Bulletin of the Los Angeles Neurological Society, 34, 135–162. Google Scholar PubMed
- Brandler, W.M., Morris, A.P., Evans, D.M., Scerri, T.S., Kemp, J.P., Timpson, N.J., & Paracchini, S. (2013). Common variants in left/right asymmetry genes and pathways are associated with relative hand skill. PLoS Genetics, 9, e1003751. http://dx.doi:10.1371/journal.pgen.1003751 CrossRef Google Scholar PubMed
- Brandler, W.M., & Paracchini, S. (2014). The genetic relationship between handedness and neurodevelopmental disorders. Trends in Molecular Genetics, 20, 83–90. http://dx.doi.org/10.1016/j.molmed.2013.10.008 CrossRef Google Scholar PubMed
- Broca, P. (1863). Localisations des fonctions cérébrales. Siège de la faculté du language articulé. Bulletin de la Société d’Anthropologie, 4, 200–208. Google Scholar
- Buckner, R.L., Andrews-Hanna, J.R., & Schacter, D.L. (2008). The brain’s default network - Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38. http://dx.doi:10.1196/annals.1440.011 CrossRef Google Scholar PubMed
- Cantalupo, C., & Hopkins, W.D. (2001). Asymmetric Broca’s area in great apes. Nature, 414, 505. CrossRef Google Scholar PubMed
- Caspers, S., Zilles, K., Laird, A.R., & Eickhoff, S.B. (2010). A metaanalysis of action observation and imitation in the human brain. Neuroimage, 50, 1148e1167. http://dx.doi:10.1016/j.neuroimage.2009.12.112 CrossRef Google Scholar
- Corballis, M.C. (1980). Laterality and myth. American Psychologist, 35, 254–265. CrossRef Google Scholar PubMed
- Corballis, M.C. (1991). The lop-sided ape. New York: Oxford University Press. Google Scholar
- Corballis, M.C. (2002). From hand to mouth: The origins of language. Princeton, NJ: Princeton University Press. Google Scholar
- Corballis, M.C., Badzakova-Trajkov, G., & Häberling, I.S. (2012). Right hand, left brain: Genetic and evolutionary bases of cerebral asymmetries for language and manual action. WIRES Cognitive Science, 3, 1–17. http://doi:10.1002/wcs.158 CrossRef Google Scholar PubMed
- Crow, T.J. (1998). Why cerebral asymmetry is the key to the origin of Homo sapiens: How to find the gene or eliminate the theory. Current Psychology of Cognition, 17, 1237–1277. Google Scholar
- Crow, T.J., Crow, L.R., Done, D.J., & Leask, S. (1998). Relative hand skill predicts academic ability: Global deficits at the point of hemispheric indecision. Neuropsychologia, 36, 1275–1282. CrossRef Google Scholar PubMed
- Dasgupta, A., & Amack, J.D. (2016). Cilia in vertebrate left–right patterning. Philosophical Transactions of the Royal Society. Series B, Biological Sciences, 371, 20150410. http://dx.doi.org/10.1098/rstb.2015.0410 CrossRef Google Scholar
- DeLisi, L.E., Svetina, C., Razi, K., Shields, G., Wellman, N., & Crow, T.J. (2002). Hand preference and hand skill in families with schizophrenia. Laterality, 7, 321–332. http://dx.DOI:10.1080/13576500143000294 CrossRef Google Scholar PubMed
- Douard, R., Feldman, A, Bargy, F., Loric, S., & Delmas, V. (2000). Anomalies of lateralization in man a case of total situs inversus. Surgerical and Radiologic Anatomy, 22, 293–297. CrossRef Google Scholar
- Ehert, G. (1987). Left hemisphere advantage in the mouse brain for recognizing ultrasonic communication calls. Nature, 325, 249–251. Google Scholar
- Enard, W., Przeworski, M., Fisher, S.E., Lai, C.S.L., Wiebe, V., Kitano, T., & Pääbo, S. (2002). Molecular evolution of FOXP2, a gene involved in speech and language. Nature, 418, 869–871. CrossRef Google Scholar PubMed
- Francks, C., Maegawa, S., Lauren, J., Abrahams, B.S., Velayos-Baeza, A., Medland, S.E., & Monaco, A.P. (2007). LRRTM1 on chromosome 2p12 is a maternally suppressed gene that is associated paternally with handedness and schizophrenia. Molecular Psychiatry, 12, 1129–1139. http://dx.doi:10.1038/sj.mp.4002053 CrossRef Google Scholar
- Gannon, P.J., Holloway, R.L., Broadfield, D.C., & Braun, A.R. (1998). Asymmetry of chimpanzee planum temporale: Humanlike pattern of Wernicke’s language area homolog. Science, 279, 220–222. CrossRef Google Scholar PubMed
- Ghirlanda, S., & Vallortigara, G. (2004). The evolution of brain lateralization: A game-theoretical analysis of population structure. Proceedings of the Royal Society. Series B, Biological Sciences, 271, 853–857. http://dx.doi:10.1098/rspb.2003.2669 CrossRef Google Scholar PubMed
- Giljov, A., Karenina, K., & Malashichev, Y. (2012). Does bipedality predict the group-level manual laterality in mammals? PLoS One, 7, e51583. http://dx.doi:10.1371/journal.pone.0051583 CrossRef Google Scholar PubMed
- Giljov, A., Karenina, K., Ingram, J., & Malashichev, Y. (2015). Parallel emergence of true handedness in the evolution of marsupials and placentals. Current Biology, 25, 1878–1884. http://dx.doi.org/10.1016/j.cub.2015.05.043 CrossRef Google Scholar PubMed
- Häberling, I.S., Corballis, P.M., & Corballis, M.C. (2016). Language, gesture, and handedness: Evidence for independent lateralized networks. Cortex, 82, 72–85. http://dx.doi.org/10.1016/j.cortex.2016.06.003 0010-9452 CrossRef Google Scholar PubMed
- Häberling, I.S., Steinemann, A., & Corballis, M.C. (2016). Cerebral asymmetry for language: Comparing production with comprehension. Neuropsychologia, 80, 17–23. http://dx.doi.org/10.1016/j.neuropsychologia.2015.11.002 CrossRef Google Scholar PubMed
- Heilman, K.M., & van den Abell, T. (1980). Right hemisphere dominance for attention: The mechanism underlying hemispheric asymmetries of inattention (neglect). Neurology, 30, 327–330. CrossRef Google Scholar
- Hewes, G.W. (1973). Primate communication and the gestural origins of language. Current Anthropology, 14, 5–24. CrossRef Google Scholar
- Hopkins, W.D., Phillips, K.A., Bania, A., Calcutt, S.E., Gardner, M., Russell, J., & Schapiro, S.J. (2011). Hand preferences for coordinated bimanual actions in 777 great apes: Implications for the evolution of handedness in hominins. Journal of Human Evolution, 60, 650–611. http://dx.doi:10.1016/j.jhevol.2010.12.008 CrossRef Google Scholar PubMed
- Jackson, J.H. (1864). Clinical remarks on cases of defects of expression (by words, writing, signs, etc) in diseases of the nervous system. Lancet, 2, 604. CrossRef Google Scholar
- Kauffman, P.R. (2016). Might hallucinations have social utility? A proposal for scientific study. Journal of Nervous & Mental Disease, 204, 702–712. http://dx.doi:0.1097/nmd.0000000000000542 CrossRef Google Scholar PubMed
- Kebir, O., & Joober, R. (2011). Neuropsychological endophenotypes in attention-deficit/hyperactivity disorder: A review of genetic association studies. European Archives of Psychiatry & Clinical Neuroscience, 261, 583–594. CrossRef Google Scholar PubMed
- Kennedy, D.N., O’Craven, K.M., Ticho, B.S., Goldstein, A.M., Makris, N., & Henson, J.W. (1999). Structural and functional brain asymmetries in human situs inversus totalis. Neurology, 53, 1260–1265. CrossRef Google Scholar PubMed
- Liégeois, F., Baldeweg, T., Connelly, A., Gadian, D.G., Mishkin, M., & Vargha-Khadem, F. (2003). Language fMRI abnormalities associated with FOXP2 gene mutation. Nature Neuroscience, 6, 1230–1237. http://dx.doi:10.1098/rspb.2003.2669 CrossRef Google Scholar PubMed
- Lindell, A.K. (2011). Lateral thinkers are not so laterally minded: Hemispheric asymmetry, interaction, and creativity. Laterality, 16, 479–498. http://dx.doi.org/10.1080/1357650X.2010.497813 CrossRef Google Scholar
- Lindell, A.K. (2013). Continuities in emotion lateralization in human and nonhuman primates. Frontiers in Human Neuroscience, 7, 464. http://dx.doi:0.3389/fnhum.2013.00464 CrossRef Google Scholar
- Liu, H., Stufflebeam, S.M., Sepulcre, J., Hedden, T., & Buckner, R. (2009). Evidence from intrinsic activity that asymmetry of the human brain is controlled by multiple factors. Proceedings of the National Academy of Sciences of the United States of America, 106, 20499–20503. http://dx.doi.10.1073.pnas.0908073106 CrossRef Google Scholar PubMed
- Ludwig, K.U., Mattheisen, M., Muhleisen, T.W., Roeske, D., Schmal, C., Breuer, R., & Cichon, S. (2009). Supporting evidence for LRRMT1 imprinting in schizophrenia. Molecular Psychiatry, 14, 743–745. http://dx.doi:10.1038/mp.2009.28 CrossRef Google Scholar
- Luys, J.B. (1881). Recherches nouvelles sur les hémiplégies émotives.Encéphale, 1, 644–646. Google Scholar
- MacNeilage, P.F., Studdert-Kennedy, M.G., & Lindblom, B. (1987). Primate handedness reconsidered. Behavioral & Brain Sciences, 10, 247–303. CrossRef Google Scholar
- Matsumoto, T., Kuriya, N., Akagi, T., Ohbu, K., Toyoda, O., Morita, J., & Kato, H. (1997). Handedness and laterality of the viscera. Neurology, 49, 1751. CrossRef Google Scholar PubMed
- Mazoyer, B., Zago, L., Jobard, G., Crivello, F., Joliot, M., Perchey, G., & Tzourio-Mazoyer, N. (2014). Gaussian mixture modeling of hemispheric lateralization for language in a large sample of healthy individuals balanced for handedness. PLos One, 9(6), e101165. CrossRef Google Scholar
- McGilchrist, I. (2009). The master and his emissary: The divided brain and the making of the western world. New Haven, CT: Yale University Press. Google Scholar
- McManus, C. (2002). Right hand, left hand: The origins of asymmetry of brains, bodies, atoms and cultures. Cambridge, MA: Harvard University Press. Google Scholar
- McManus, I.C., & Bryden, M.P. (1992). The genetics of handedness, cerebral dominance and lateralization. In I. Rapin & S.J. Segalowitz (Eds.), Handbook of neuropsychology, Vol. 6: Developmental neuropsychology, Part 1 (pp. 115–144). Amsterdam: Elsevier. Google Scholar
- McManus, I.C., Davison, A., & Armour, J.A.L. (2009). Multilocus genetic models of handedness closely resemble single-locus models in explaining family data and are compatible with genome-wide association studies. Annals of the New York Academy of Sciences, 1288, 48–58. http://dx.doi:10.1111/nyas.12102 CrossRef Google Scholar PubMed
- Medland, S., Duffy, D.L., Wright, M.J., Geffen, G.M., Hay, D.A, Levy, F., & Boomsma, D.I. (2009). Genetic influences on handedness: Data from 25,732 Australian and Dutch twin families. Neuropsychologia, 47, 330–337. http://dx.doi:10.1016/j.neuropsychologia.2008.09.005 CrossRef Google Scholar PubMed
- Meguerditchian, A., Vauclair, J., & Hopkins, W.D. (2013). On the origins of human handedness and language: A comparative review of hand preferences for bimanual coordinated actions and gestural communication in nonhuman primates. Developmental Psychobiology, 55, 637–650. http://dx.doi:10.1002/dev.21150 CrossRef Google Scholar PubMed
- Needham, R. (1973). Right and left: Essays on dual symbolic classification. Chicago, IL: University of Chicago Press. Google Scholar
- Ocklenburg, S., Arning, L., Gerding, W.M., Epplen, J.T., Güntürkün, O., & Beste, C. (2013a). Cholecystokinin A receptor (CCKAR) gene variation is associated with language lateralization. PLoS One, 8, e53643. http://dx.doi.org/10.1371/journal.pone.0053643 CrossRef Google Scholar PubMed
- Ocklenburg, S., Arning, L., Gerding, W.M., Epplen, J.T., Güntürkün, O., & Beste, C. (2013b). FOXP2 variation modulates functional hemispheric asymmetries for speech perception. Brain & Language, 126, 279–284. http://dx.doi.org/10.1016/j.bandl.2013.07.001 CrossRef Google Scholar PubMed
- Ogden, J.A. (1985). Antero-posterior interhemispheric differences in the loci of lesions producing visual hemineglect. Brain & Cognition, 4, 59–75. CrossRef Google Scholar
- Ornstein, R.E. (1972). The psychology of consciousness. San Francisco: Freeman. Google Scholar
- Orr, K.G., Cannon, M., Gilvarry, C.M., Jones, P.B., & Murray, R.M. (1999). Schizophrenic patients and their first-degree relatives show an excess of mixed-handedness. Schizophrenia Research, 39, 167–176. CrossRef Google Scholar PubMed
- Orton, S.T. (1937). Reading, writing, and speech problems in children. New York: W.W. Norton & Co. Ltd. Google Scholar
- Pinel, P., Fauchereau, F., Moreno, A., Barbot, A., Lathrop, M., Zelenika, D., & Dehaene, S. (2012). Genetic variants of FOXP2 and KIAA0319/TTRAP/THEM2 locus are associated with altered brain activation in distinct language-related regions. Journal of Neuroscience, 32, 817–825. http://dx.doi:10.1523/jneurosci.5996-10.2012 CrossRef Google Scholar PubMed
- Porac, C., Rees, L., & Buller, T. (1990). Switching hands: A place for left hand use in a right hand world. In S. Coren (Ed.), Left-handedness: Behavioral implications and anomalies (pp. 259–290). Amsterdam: Elsevier Science. Google Scholar
- Power, R.A., Steinberg, S., Bjornsdottir, G., Rietveld, C.A., Abdellaoui, A., Nivard, M.M., & Stefansson, K. (2015). Polygenic risk scores for schizophrenia and bipolar disorder predict creativity. Nature Neuroscience, 18, 953–955. http://dx.doi:10.1038/nn.4040 CrossRef Google Scholar PubMed
- Rhodes, G., & Zebrowitz, L.A. (Eds.), (2002). Facial attractiveness. London: Ablex. Google Scholar PubMed
- Rizzolatti, G., & Arbib, M.A. (1998). Language within our grasp. Trends in Neurosciences, 21, 188e194. CrossRef Google Scholar PubMed
- Rizzolatti, G., & Sinigaglia, C. (2010). The functional role of the parieto-frontal mirror circuit: Interpretations and misinterpretations. Nature Reviews Neuroscience, 11, 264e274. http://dx.doi:10.1038/nrn2805 CrossRef Google Scholar PubMed
- Rodriguez, A., Kaakinen, M., Moilanen, I., Taanila, A., McGough, J.L., & Jarvelin, M-R. (2010). Mixed-handedness is linked to mental health problems in children and adolescents. Pediatrics, 125, e340–e348. http://dx.doi:10.1542/peds.2009-1165 CrossRef Google Scholar PubMed
- Rodriguez, A., & Waldenstrom, U. (2008). Fetal origins of child non-right-handedness and mental health. Journal of Child Psychology & Psychiatry, 49, 967–976. http://dx.doi:10.1111/j.1469-7610.2008.01923.x CrossRef Google Scholar PubMed
- Rogers, L.J., & Kaplan, G. (1996). Hand preferences and other lateral biases in rehabilitated orang-utans. Pongo pygmaeus. Animal Behaviour, 51, 13–25. CrossRef Google Scholar
- Rogers, L.J., Vallortigara, G., & Andrew, R.J. (2013). Divided brains: The biology and behavior of brain asymmetries. Cambridge, UK: Cambridge University Press. CrossRef Google Scholar
- Scerri, T.S., Brandler, W.M., Paracchini, S., Morris, A.P., Ring, S.M., Richardson, A.J., & Monaco, A.P. (2011). PCSK6 is associated with handedness in individuals with dyslexia. Human Molecular Genetics, 20, 608–614. http://dx.doi:10.1093/hmg/ddq475 CrossRef Google Scholar PubMed
- Shobe, E.R., Ross, N.M., & Fleck, J.I. (2009). Influence of handedness and bilateral eye movements on creativity. Brain & Cognition, 71, 204–214. http://dx.doi.org/10.1080/1357650X.2015.1089879 CrossRef Google Scholar PubMed
- Shore, R., Covill, L, Pettigrew, K.A., Brandler, W.M., Diaz, R., Xu, Y., & Paracchini, S. (2016). The handedness-associated PCSK6 locus spans an intronic promoter regulating novel transcripts. Human Molecular Genetics, 25, 1771–1779. http://dx.doi:10.1093/hmg/ddw047 CrossRef Google Scholar PubMed
- Somers, M., Sommer, I.E., Boks, M.P., & Kahn, R.S. (2009). Hand-preference and population schizotypy. Schizophrenia Research, 108, 25–32. http://dx.doi:10.1016/j.schres.2008.11.010 CrossRef Google Scholar PubMed
- Sperry, R.W. (1982). Some effects of disconnecting the cerebral hemisphere. Science, 217, 1223–1227. CrossRef Google Scholar
- Szathmáry, E. (2015). Toward major evolutionary transitions theory 2.0. Proceedings of the National Academy of Sciences of the United States of America, 102, 10104–10111. http://dx.doi/10.1073/pnas.1421398112 CrossRef Google Scholar
- Thornhill, R., & Gangestad, S.W. (1994). Human fluctuating asymmetry and sexual behavior. Human Nature, 4, 297–302. Google Scholar
- Torgersen, J. (1950). Situs inversus, asymmetry, and twinning. American Journal of Human Genetics, 2, 361–370. Google Scholar PubMed
- Tsuang, H.-C., Chen, W.J., Kuo, S.-Y., & Hsiao, P.-C. (2013). The cross-cultural nature of the relationship between schizotypy and mixed handedness. Laterality, 18, 476–490. http://dx.doi:10.1080/1357650x.2012.720985 CrossRef Google Scholar PubMed
- Wernicke, C. (1874). Der Aphasische Symptomencomplex. Eine psychologische Studie auf anatomische Basis. Breslau: Cohn and Wiegert. Google Scholar
- Whitaker, H.A. (1982). Dichotomania: An essay on our left and right brains. Journal of Visual Verbal Languaging, 2, 7–13. CrossRef Google Scholar
Thirty years ago, the neuropsychology of emotion started to emerge as a mainstream topic. Careful examination of individual patients showed that emotion, like memory,language, and so on, could be differentially affected by brain disorders, especially in the right hemisphere. Since then, there has been accelerating interest in uncoveringthe neural architecture of emotion, and the major steps in this process of discovery over the past 3 decades are detailed in this review. In the 1990s, magnetic resonanceimaging (MRI) scans provided precise delineation of lesions in the amygdala, medial prefrontal cortex, insula and somatosensory cortex as underpinning emotion disorders.At the same time, functional MRI revealed activation that was bilateral and also lateralized according to task demands. In the 2000s, converging evidence suggestedat least two routes to emotional responses: subcortical, automatic and autonomic responses and slower, cortical responses mediating cognitive processing. The discoveryof mirror neurons in the 1990s reinvigorated older views that simulation was the means to recognize emotions and empathize with others. More recently, psychophysiologicalresearch, revisiting older Russian paradigms, has contributed new insights into how autonomic and other physiological indices contribute to decision making (the somaticmarker theory), emotional simulation, and social cognition. Finally, this review considers the extent to which these seismic changes in understanding emotional processesin clinical disorders have been reflected in neuropsychological practice. (JINS, 2017, 23, 719–731)
- Adolphs, R. (2002a). Recognizing emotion from facial expressions: Psychological and neurological mechanisms. Behavioral & Cognitive Neuroscience Reviews, 1(1), 21–62. CrossRef Google Scholar PubMed
- Adolphs, R. (2002b). Neural systems for recognizing emotion. Current Opinion in Neurobiology, 12, 169–177. CrossRef Google Scholar PubMed
- Adolphs, R., Damasio, H., & Tranel, D. (2002). Neural systems for recognition of emotional prosody: A 3-D lesion study. Emotion, 2(1), 23–51. CrossRef Google Scholar PubMed
- Adolphs, R., Damasio, H., Tranel, D., & Damasio, A.R. (1996). Cortical systems for the recognition of emotion in facial expressions. Journal of Neuroscience, 16(23), 7678–7687. Google Scholar PubMed
- Adolphs, R., Jansari, A., & Tranel, D. (2001). Hemispheric perception of emotional valence from facial expressions. Neuropsychology, 15(4), 516–524. CrossRef Google Scholar PubMed
- Adolphs, R., & Tranel, D. (2004). Impaired judgments of sadness but not happiness following bilateral amygdala damage. Journal of Cognitive Neuroscience, 16(3), 453–462. CrossRef Google Scholar
- Adolphs, R., Tranel, D., & Damasio, A.R. (1998). The human amygdala in social judgment. Nature, 393(6684), 470–474. CrossRef Google Scholar PubMed
- Adolphs, R., Tranel, D., & Damasio, A.R. (2003). Dissociable neural systems for recognizing emotions. Brain & Cognition, 52(1), 61–69. CrossRef Google Scholar PubMed
- Adolphs, R., Tranel, D., Damasio, A.R., & Damasio, H. (1994). Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Journal of Neuroscience, 15, 5879–5891. Google Scholar
- Adolphs, R., Tranel, D., & Damasio, H. (2001). Emotion recognition from faces and prosody following temporal lobectomy. Neuropsychology, 15(3), 396–404. CrossRef Google Scholar PubMed
- Amodio, D.M., & Frith, C.D. (2006). Meeting of minds: the medial frontal cortex and social cognition. Nature Reviews Neuroscience, 7(4), 268–277. CrossRef Google Scholar
- Angrilli, A., Mauri, A., Palomba, D., Flor, H., Birbaumer, N., Sartori, G., & di Paola, F. (1996). Startle reflex and emotion modulation impairment after a right amygdala lesion. Brain, 119(Pt 6), 1991–2000. CrossRef Google Scholar PubMed
- Angrilli, A., Palomba, D., Cantagallo, A., Maietti, A., & Stegagno, L. (1999). Emotional impairment after right orbitofrontal lesion in a patient without cognitive deficits. NeuroReport, 10(8), 1741–1746. CrossRef Google Scholar
- Baas, D., Aleman, A., & Kahn, R.S. (2004). Lateralization of amygdala activation: a systematic review of functional neuroimaging studies. Brain Research Reviews, 45(2), 96–103. CrossRef Google Scholar PubMed
- Babbage, D.R., Yim, J., Zupan, B., Neumann, D., Tomita, M.R., & Willer, B. (2011). Meta-analysis of facial affect recognition difficulties after traumatic brain injury. Neuropsychology, 25(3), 277–285. CrossRef Google Scholar PubMed
- Balconi, M., & Bortolotti, A. (2013). The “simulation” of the facial expression of emotions in case of short and long stimulus duration. The effect of pre-motor cortex inhibition by rTMS. Brain and Cognition, 83, 114–120. CrossRef Google Scholar
- Baron-Cohen, S., Leslie, A.M., & Frith, U. (1985). Does the autistic child have a “theory of mind”? Cognition, 21, 37–46. CrossRef Google Scholar PubMed
- Barrash, J., Tranel, D., & Anderson, S.W. (2000). Acquired personality disturbances associated with bilateral damage to the ventromedial prefrontal region. Developmental Neuropsychology, 18(3), 355–381. CrossRef Google Scholar PubMed
- Bavelas, J.B., Black, A., Chovil, N., Lemery, C.R., & Mullett, J. (1988). Form and function in motor mimicry topographic evidence that the primary function is communicative. Human Communication Research, 14(3), 275–299. CrossRef Google Scholar
- Bechara, A. (2004). The role of emotion in decision-making: Evidence from neurological patients with orbitofrontal damage. Brain and Cognition, 55(1), 30–40. CrossRef Google Scholar PubMed
- Bechara, A., Damasio, H., Damasio, A.R., & Lee, G.P. (1999). Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. Journal of Neuroscience, 19(13), 5473–5481. Google Scholar PubMed
- Bechara, A., Damasio, H., Tranel, D., & Damasio, A.R. (1997). Deciding advantageously before knowing the advantageous strategy. Science, 275(5304), 1293–1294. CrossRef Google Scholar PubMed
- Bechara, A., Tranel, D., & Damasio, H. (2000). Characterization of the decision-making deficit of patients with ventromedial prefrontal cortex lesions. Brain, 123(11), 2189–2202. CrossRef Google Scholar PubMed
- Bechara, A., Tranel, D., Damasio, H., Adolphs, R., Rockland, C., & Damasio, A.R. (1995). Double dissociation of conditioning and declarative knowledge relative to the amygdala and hippocampus in humans. Science, 269, 1115–1118. CrossRef Google Scholar PubMed
- Bechara, A., Tranel, D., Damasio, H., & Damasio, A.R. (1996). Failure to respond autonomically to anticipated future outcomes following damage to prefrontal cortex. Cerebral Cortex, 6(2), 215–225. CrossRef Google Scholar PubMed
- Belliveau, J.W., Kennedy, D.N. Jr., McKinstry, R.C., Buchbinder, B.R., Weisskoff, R.M., Cohen, M.S., & Rosen, B.R. (1991). Functional mapping of the human visual cortex by magnetic resonance imaging. Science, 254(5032), 716–719. CrossRef Google Scholar PubMed
- Benton, A.L. (1968). Differential behavioural effects in frontal lobe disease. Neuropsychologia, 6, 53–60. CrossRef Google Scholar
- Blair, R.J., & Cipolotti, L. (2000). Impaired social response reversal: A case of “acquired sociopathy”. Brain, 123, 1122–1141. CrossRef Google Scholar
- Blairy, S., Herrera, P., & Hess, U. (1999). Mimicry and the judgment of emotional facial expressions. Journal of Nonverbal Behavior, 23(1), 5–41. CrossRef Google Scholar
- Boggio, P.S., Rigonatti, S.P., Ribeiro, R.B., Myczkowski, M.L., Nitsche, M.A., Pascual-Leone, A., & Fregni, F. (2008). A randomized, double-blind clinical trial on the efficacy of cortical direct current stimulation for the treatment of major depression. International Journal of Neuropsychopharmacology, 11(2), 249–254. CrossRef Google Scholar PubMed
- Bölte, S., Feineis-Matthews, S., & Poustka, F. (2008). Brief report: Emotional processing in high-functioning autism--Physiological reactivity and affective report. Journal of Autism & Developmental Disorders, 38, 776–781. CrossRef Google Scholar
- Bornhofen, C., & McDonald, S. (2008a). Comparing strategies for treating emotion perception deficits in traumatic brain injury. Journal of Head Trauma Rehabilitation, 23, 103–115. CrossRef Google Scholar PubMed
- Bornhofen, C., & McDonald, S. (2008b). Treating deficits in emotion perception following traumatic brain injury. Neuropsychological Rehabilitation, 18(1), 22–44. CrossRef Google Scholar PubMed
- Borod, J.C., & Caron, H.S. (1980). Facedness and emotion related to lateral dominance, sex and expression type. Neuropsychologia, 18(2), 237–242. doi: https://doi.org/10.1016/0028-3932(80)90070-6 CrossRef Google Scholar PubMed
- Borod, J.C., Koff, E., Lorch, M.P., & Nicholas, M. (1985). Channels of emotional expression in patients with unilateral brain damage. Archives of Neurology, 42(4), 345–348. CrossRef Google Scholar PubMed
- Borod, J.C., Koff, E., Lorch, M.P., & Nicholas, M. (1986). The expression and perception of facial emotion in brain-damaged patients. Neuropsychologia, 24(2), 169–180. CrossRef Google Scholar PubMed
- Borod, J.C., Tabert, M.H., Santschi, C., & Strauss, E. (2000). Neuropsychological assessment of emotional processing in brain-damaged patients. In J. Borod (Ed.), The neuropsychology of emotion (pp 80–105). New York: Oxford University Press. Google Scholar
- Borod, J.C., Welkowitz, J., Alpert, M., Brozgold, A., Martin, C., Peselow, E., & Diller, L. (1990). Parameters of emotional processing in neuropsychiatric disorders: Conceptual issues and a battery of tests. Journal of Communication Disorders, 23, 247–271. CrossRef Google Scholar
- Bowers, D., Blonder, L.X., & Heilman, K.M. (1991). Florida affect battery. Gainsville, FL: Centre for Neuropsychological Studies, University of Florida. Google Scholar
- Bowers, L., Huisingh, R., & LoGiudice, C. (2010). Social Language Development Test - Adolescent Manual. East Moline, IL: LinguiSystems, Inc. Google Scholar
- Brooks, D.N., Campsie, L., Symington, C., Beattie, A., & McKinlay, W. (1986). The five year outcome of severe blunt head injury: A relative’s view. Journal of Neurology, Neurosurgery, & Psychiatry, 49(7), 764–770. CrossRef Google Scholar PubMed
- Brownell, H.H., Michel, D., Powelson, J., & Gardner, H. (1983). Surprise but not coherence: Sensitivity to verbal humor in right-hemisphere patients. Brain and Language, 18, 20–27. CrossRef Google Scholar
- Bryden, M.P., Ley, R.G., & Sugarman, J.H. (1982). A left-ear advantage for identifying the emotional quality of tonal sequences. Neuropsychologia, 20(1), 83–87. doi: https://doi.org/10.1016/0028-3932(82)90089-6 CrossRef Google Scholar PubMed
- Buchanan, T.W., Tranel, D., & Adolphs, R. (2004). Anteromedial temporal lobe damage blocks startle modulation by fear and disgust. Behavioral Neuroscience, 118(2), 429–437. CrossRef Google Scholar PubMed
- Calder, A.J., Keane, J., Manes, F., Antoun, N., & Young, A.W. (2000). Impaired recognition and experience of disgust following brain injury. Nature Neuroscience, 3(11), 1077–1078. CrossRef Google Scholar PubMed
- Carr, L., Iacoboni, M., Dubeau, M.-C., Maxzziotta, J.C., & Lenzi, G.L. (2003). Neural mechanisms of empathy in humans: A relay from neural systems for imitation to limbic areas. Proceedings of the National Academy of Science of the United States of America, 100, 5487–5502. CrossRef Google Scholar PubMed
- Cassel, A., McDonald, S., Kelly, M., & Togher, L. (2016). Learning from the minds of others: A review of social cognition treatments and their relevance to traumatic brain injury. Neuropsychological Rehabilitation, 1–34. doi: 10.1080/09602011.2016.1257435 CrossRef Google Scholar PubMed
- Cattran, C.J., Oddy, M., Wood, R.L., & Moir, J.F. (2011). Post-injury personality in the prediction of outcome following severe acquired brain injury. Brain Injury, 25(11), 1035–1046. CrossRef Google Scholar PubMed
- Cicone, M., Wapner, W., & Gardner, H. (1980). Sensitivity to emotional expressions and situations in organic patients. Cortex, 16, 145–158. CrossRef Google Scholar PubMed
- Combs, D.R., Adams, S.D., Penn, D.L., Roberts, D., Tiegreen, J., & Stem, P. (2007). Social Cognition and Interaction Training (SCIT) for inpatients with schizophrenia spectrum disorders: Preliminary findings. Schizophrenia Research, 91(1-3), 112–116. CrossRef Google Scholar PubMed
- Costafreda, S.G., Brammer, M.J., David, A.S., & Fu, C.H. (2008). Predictors of amygdala activation during the processing of emotional stimuli: A meta-analysis of 385 PET and fMRI studies. Brain Research Reviews, 58(1), 57–70. CrossRef Google Scholar
- Croker, V., & McDonald, S. (2005). Recognition of emotion from facial expression following traumatic brain injury. Brain Injury, 19, 787–789. CrossRef Google Scholar PubMed
- Cusi, A.M., Nazarov, A., Holshausen, K., MacQueen, G.M., & McKinnon, M.C. (2012). Systematic review of the neural basis of social cognition in patients with mood disorders. Journal of Psychiatry & Neuroscience, 37(3), 154–169. CrossRef Google Scholar PubMed
- Damasio, A.R., Tranel, D., & Damasio, H. (1990). Individuals with sociopathic behavior caused by frontal damage fail to respond autonomically to social stimuli. Behavioural Brain Research, 41(2), 81–94. CrossRef Google Scholar PubMed
- Damasio, A.R., Tranel, D., & Damasio, H.C. (1991). Somatic markers and the guidance of behavior: Theory and preliminary testing. In H.S. Levin, H.M. Eisenberg & A.L. Benton (Eds.), Frontal lobe function and dysfunction (pp 217–229). NY, US: Oxford University Press. Google Scholar
- Darwin, C. (1872). The expression of the emotions in man and animals. London, England: John Murray. CrossRef Google Scholar
- Davidson, R.J. (1984). Affect, cognition and hemispheric specialization. In C. E. Izard, J. Kagan & R. Zajonc (Eds.), Emotion, cognition and behavior (pp 320–365). New York: Cambridge University Press. Google Scholar
- Davidson, R.J., Pizzagalli, D., Nitschke, J.B., & Kalin, N.H. (2003). Parsing the subcomponents of emotion and disorders of emotion: Perspectives from affective neuroscience. In R.J. Davidson, K.R. Scherer & H.H. Goldsmith (Eds.), Handbook of affective sciences. Oxford: Oxford University Press. Google Scholar
- Davis, J.I., Senghas, A., Brandt, F., & Ochsner, K.N. (2010). The effects of BOTOX injections on emotional experience. Emotion, 10(3), 433–440. CrossRef Google Scholar PubMed
- de Sousa, A., McDonald, S., Rushby, J., Li, S., Dimoska, A., & James, C. (2011). Understanding deficits in empathy after traumatic brain injury: The role of affective responsivity. Cortex, 47(5), 526–535. CrossRef Google Scholar PubMed
- De Winter, F.-L., Zhu, Q., Van den Stock, J., Nelissen, K., Peeters, R., de Gelder, B., & Vandenbulcke, M. (2015). Lateralization for dynamic facial expressions in human superior temporal sulcus. Neuroimage, 106, 340–352. Google Scholar
- Demark, J., & Gemeinhardt, M. (2002). Anger and it’s management for survivors of acquired brain injury. Brain Injury, 16(2), 91–108. CrossRef Google Scholar PubMed
- Dethier, M., Blairy, S., Rosenberg, H., & McDonald, S. (2012). Spontaneous and posed emotional facial expressions following severe traumatic brain injury. Journal of Clinical and Experimental Neuropsychology, 34(9), 936–947. CrossRef Google Scholar PubMed
- Dethier, M., Blairy, S., Rosenberg, H., & McDonald, S. (2013). Deficits in processing feedback from emotional behaviours following severe TBI. Journal of the International Neuropsychological Society, 19(4), 367–379. CrossRef Google Scholar
- di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: a neurophysiological study. Experimental Brain Research, 91(1), 176–180. CrossRef Google Scholar PubMed
- Dimberg, U., & Thunberg, M. (1998). Rapid facial reactions to emotional facial expressions. Scandinavian Journal of Psychology, 39, 39–45. CrossRef Google Scholar PubMed
- Dimberg, U., Thunberg, M., & Elmehed, K. (2000). Unconscious facial reactions to emotional facial reactions. Psychological Science, 11, 86–89. CrossRef Google Scholar PubMed
- Ekman, P., & Friesen, W.V. (1971). Constants across culture in the face and emotion. Journal of Personality and Social Psychology, 17, 124–129. CrossRef Google Scholar PubMed
- Emery, N.A., & Amaral, D.G. (2000). The role of the amygdala in primate social cognition. In R. D. Lane & L. Nadel (Eds.), Cognitive neuroscience of emotion. Oxford: Oxford University Press. Google Scholar
- Esteves, F., Dimberg, U., & Ohman, A. (1994). Automatically elirefd fear: Conditioned skin conductance responses to masked facial expressions. Cognition & Emotion, 8(5), 393–413. CrossRef Google Scholar
- Feinstein, J.S., Khalsa, S.S., Salomons, T.V., Prkachin, K.M., Frey-Law, L.A., Lee, J.E., & Rudrauf, D. (2016). Preserved emotional awareness of pain in a patient with extensive bilateral damage to the insula, anterior cingulate, and amygdala. Brain Structure & Function, 221, 1499–1511. CrossRef Google Scholar
- Fellows, L.K., & Farah, M.J. (2005). Different underlying impairments in decision-making following ventromedial and dorsolateral frontal lobe damage in humans. Cerebral Cortex, 15(1), 58–63. CrossRef Google Scholar PubMed
- Fernie, G., & Tunney, R.J. (2013). Learning on the IGT follows emergence of knowledge but not differential somatic activity. Frontiers in Psychology, 4, 687. CrossRef Google Scholar
- Fett, A.K.J., Viechtbauer, W., Dominguez, M.D.G., Penn, D.L., van Os, J., & Krabbendam, L. (2011). The relationship between neurocognition and social cognition with functional outcomes in schizophrenia: A meta-analysis. Neuroscience and Biobehavioral Reviews, 35(3), 573–588. CrossRef Google Scholar PubMed
- Fisher, A.C., Rushby, J.A., McDonald, S., Parks, N., & Piguet, O. (2015). Neurophysiological correlates of dysregulated emotional arousal in severe traumatic brain injury. Clinical Neurophysiology, 126(2), 314–324. CrossRef Google Scholar PubMed
- Fox, N.A., Bakermans-Kranenburg, M.J., Yoo, K.H., Bowman, L.C., Cannon, E.N., Vanderwert, R.E., & van Ijzendoorn, M.H. (2016). Assessing human mirror activity with EEG mu right hemisphereythm: A meta-analysis. Psychological Bulletin, 142(3), 291–313. CrossRef Google Scholar
- Francis, H.M., Fisher, A., Rushby, J.A., & McDonald, S. (2016). Reduced heart rate variability in chronic severe traumatic brain injury: Association with impaired emotional and social functioning, and potential for treatment using biofeedback. Neuropsychological Rehabilitation, 26(1), 103–125. CrossRef Google Scholar PubMed
- Funayama, E.S., Grillon, C., Davis, M., & Phelps, E.A. (2001). A double dissociation in the affective modulation of startle in humans: effects of unilateral temporal lobectomy. Journal of Cognitive Neuroscience, 13(6), 721–729. CrossRef Google Scholar PubMed
- Gainotti, G. (1972). Emotional behavior and hemispheric side of the lesion. Cortex, 8, 41–55. CrossRef Google Scholar
- Gazzola, V., Aziz-Zadeh, L., & Keysers, C. (2006). Empathy and the somatotopic auditory mirror system in humans. Current Biology, 16(18), 1824–1829. CrossRef Google Scholar PubMed
- Golden, W.L., & Consorte, J. (1982). Training mildly retarded individuals to control their anger through the use of cognitive-behavior therapy techniques. Journal of Contemporary Psychotherapy, 13(2), 182–187. CrossRef Google Scholar
- Grafman, J., Schwab, K., Warden, D., Pridgen, A., Brown, H.R., & Salazar, A.M. (1996). Frontal lobe injuries, violence, and aggression: A report of the Vietnam Head Injury Study. Neurology, 46(5), 1231–1238. CrossRef Google Scholar PubMed
- Green, M.J., Cahill, C.M., & Malhi, G.S. (2007). The cognitive and neurophysiological basis of emotion dysregulation in bipolar disorder. Journal of Affective Disorders, 103(1-3), 29–42. CrossRef Google Scholar PubMed
- Grèzes, J., & Decety, J. (2001). Functional anatomy of execution, mental simulation, observation, and verb generation of actions: A meta-analysis. Human Brain Mapping, 12(1), 1–19.3.0.CO;2-V>CrossRef Google Scholar PubMed
- Guillaume, S., Jollant, F., Jaussent, I., Lawrence, N., Malafosse, A., & Courtet, P. (2009). Somatic markers and explicit knowledge are both involved in decision-making. Neuropsychologia, 47(10), 2120–2124. CrossRef Google Scholar PubMed
- Gutbrod, K., Krouzel, C., Hofer, H., Muri, R., Perrig, W., & Ptak, R. (2006). Decision-making in amnesia: Do advantageous decisions require conscious knowledge of previous behavioural choices? Neuropsychologia, 44(8), 1315–1324. CrossRef Google Scholar PubMed
- Hariri, A.R., Bookheimer, S.Y., & Mazziotta, J.C. (2000). Modulating emotional responses: Effects of a neocortical network on the limbic system. Neuroreport, 11(1), 43–48. CrossRef Google Scholar PubMed
- Hazelton, J.L., Irish, M., Hodges, J.R., Piguet, O., & Kumfor, F. (2016). Cognitive and affective empathy disruption in non-fluent primary progressive aphasia syndromes. Brain Impairment, 1–13. doi: 10.1017/BrImp.2016.21 Google Scholar
- Heilman, K.M., Bowers, D., & Valenstein, E. (1985). Emotional disorders associated with neurological diseases. In K. Heilman & E. Valenstein (Eds.), Clinical neuropsychology (pp 377–402). New York: Oxford University Press. Google Scholar
- Heilman, K.M., Scholes, R., & Watson, R. (1975). Auditory affective agnosia: Disturbed comprehension of affective speech. Journal of Neurology, Neurosurgery, & Psychiatry, 38, 69–72. CrossRef Google Scholar PubMed
- Heims, H., Critchley, H., Dolan, R., Mathias, C., & Cipolotti, L. (2004). Social and motivational functioning is not critically dependent on feedback of autonomic responses: Neuropsychological evidence from patients with pure autonomic failure. Neuropsychologia, 42(14), 1979–1988. CrossRef Google Scholar
- Heller, W., & Levy, J. (1981). Perception and expression of emotion in right-handers and left-handers. Neuropsychologia, 19(2), 263–272. doi: https://doi.org/10.1016/0028-3932(81)90110-X CrossRef Google Scholar PubMed
- Hess, U., & Blairy, S. (2001). Facial mimicry and emotional contagion to dynamic emotional facial expressions and their influence on decoding accuracy. International Journal of Psychophysiology, 40(2), 129–141. CrossRef Google Scholar PubMed
- Hinson, J.M., Jameson, T.L., & Whitney, P. (2002). Somatic markers, working memory, and decision making. Cognitive, Affective, & Behavioral Neuroscience, 2, 341–353. CrossRef Google Scholar PubMed
- Hoffman, M.L. (1984). Interaction of affect and cognition on empathy. In P. Phillippot, R. Feldman & E. Coats (Eds.), The social context of nonverbal behaviour (pp 103–131). Cambridge: Cambridge University Press. Google Scholar
- Honan, C.A., McDonald, S., Sufani, C., Hine, D.W., & Kumfor, F. (2016). The awareness of social inference test: Development of a shortened version for use in adults with acquired brain injury. Clinical Neuropsychologist, 30(2), 243–264. CrossRef Google Scholar PubMed
- Honan, C.A., McDonald, S., Tate, R.L., Ownsworth, T., Fleming, J., Anderson, V., & Ponsford, J. (in press). Outcome instruments in moderate-to-severe traumatic brain injury: Recommendations for use in psychosocial research. Neuropsychological Rehabilitation. Google Scholar
- Hopkins, M.J., Dywan, J., & Segalowitz, S.J. (2002). Altered electrodermal response to facial expression after closed head injury. Brain Injury, 16, 245–257. CrossRef Google Scholar PubMed
- Horan, W.P., Kern, R.S., Green, M.F., & Penn, D.L. (2008). Social cognition training for individuals with schizophrenia: Emerging evidence. American Journal of Psychiatric Rehabilitation, 11(3), 205–252. CrossRef Google Scholar
- Hornak, J., Rolls, E.T., & Wade, D. (1996). Face and voice expression identification in patients with emotional and behavioural changes following ventral frontal lobe damage. Neuropsychologia, 34(4), 247–261. CrossRef Google Scholar PubMed
- Iacoboni, M. (2009). Imitation, empathy, and mirror neurons. Annual Review of Psychology, 60(1), 653–670. CrossRef Google Scholar PubMed
- Irani, F., Seligman, S., Kamath, V., Kohler, C., & Gur, R.C. (2012). A meta-analysis of emotion perception and functional outcomes in schizophrenia. Schizophrenia Research, 137(1-3), 203–211. CrossRef Google Scholar
- Izard, C.E. (1971). The face of emotion (Vol. xii). CT: Appleton-Century-Crofts. Google Scholar
- Jackson, P.L., Rainville, P., & Decety, J. (2006). To what extent do we share the pain of others? Insight from the neural bases of pain empathy. Pain, 125(1-2), 5–9. CrossRef Google Scholar PubMed
- Jacobson, L., Javitt, D.C., & Lavidor, M. (2011). Activation of inhibition: diminishing impulsive behavior by direct current stimulation over the inferior frontal gyrus. Journal of Cognitive Neuroscience, 23(11), 3380–3387. CrossRef Google Scholar PubMed
- Kamminga, J., Kumfor, F., Burrell, J.R., Piguet, O., Hodges, J.R., & Irish, M. (2015). Differentiating between right-lateralised semantic dementia and behavioural-variant frontotemporal dementia: An examination of clinical characteristics and emotion processing. Journal of Neurology, Neurosurgery, & Psychiatry, 86(10), 1082–1088. CrossRef Google Scholar PubMed
- Kant, R., Duffy, J.D., & Pivovarnik, A. (1998). Prevalence of apathy following head injury. Brain Injury, 12(1), 87–92. CrossRef Google Scholar PubMed
- Keightly, M.L., Winocur, G., Graham, S.J., Matyberg, H.S., Hevenor, S.J., & Grady, C.L. (2003). An fMRI study investigating cognitive modulation of brain regions associated with emotional processing of visual stimuli. Neuropsychologia, 41, 585–596. CrossRef Google Scholar
- Kelly, M., McDonald, S., & Frith, M.H.J. (2017). Assessment and rehabilitation of social cognition impairment after brain injury: Surveying practices of clinicians. Brain Impairment, 18(1), 11–35. CrossRef Google Scholar
- Kelly, M.P., McDonald, S.P., & Frith, M.H.J. (in press). A survey of clinicians working in brain injury rehabilitation: Are social cognition impairments on the radar? Journal of Head Trauma Rehabilitation. Google Scholar
- Kern, R.S., Nuechterlein, K.H., Green, M.F., Baade, L.E., Fenton, W.S., Gold, J.M., & Marder, S.R. (2008). The MATRICS Consensus Cognitive Battery, Part 2: Co-norming and standardization. American Journal of Psychiatry, 165(2), 214–220. CrossRef Google Scholar PubMed
- Kinsella, G., Packer, S., & Olver, J. (1991). Maternal reporting of behaviour following very severe blunt head injury. Journal of Neurology, Neurosurgery, & Psychiatry, 54(5), 422–426. CrossRef Google Scholar PubMed
- Kohler, C.G., Walker, J.B., Martin, E.A., Healey, K.M., & Moberg, P.J. (2010). Facial emotion perception in schizophrenia: A meta-analytic review. Schizophrenia Bulletin, 36(5), 1009–1019. CrossRef Google Scholar PubMed
- Korkman, M., Kirk, U., & Kemp, S. (2007). NEPSY- second edition. New York: Pearson Assessment. Google Scholar
- Kumfor, F., Landin-Romero, R., Devenney, E., Hutchings, R., Grasso, R., Hodges, J.R., & Piguet, O. (2016). On the right side? A longitudinal study of left-versus right-lateralized semantic dementia. Brain, 139(3), 986–998. doi: 10.1093/brain/awv387 CrossRef Google Scholar PubMed
- Kuehn, E., Mueller, K., Turner, R., & Schutz-Bosbach, S. (2014). The functional architecture of S1 during touch observation described with 7 T fMRI. Brain Structure & Function, 219(1), 119–140. CrossRef Google Scholar PubMed
- Kurtz, M.M., & Richardson, C.L. (2012). Social cognitive training for schizophrenia: A meta-analytic investigation of controlled research. Schizophrenia Bulletin, 38(5), 1092–1104. CrossRef Google Scholar PubMed
- Landin-Romero, R., Tan, R., Hodges, J.R., & Kumfor, F. (2016). An update on semantic dementia: Genetics, imaging, and pathology. Alzheimer’s Research & Therapy, 8(1), 52. CrossRef Google Scholar PubMed
- Langner, R., & Eickhoff, S.B. (2013). Sustaining attention to simple tasks: A meta-analytic review of the neural mechanisms of vigilant attention. Psychological Bulletin, 139(4), 870–900. CrossRef Google Scholar PubMed
- LeDoux, J. (1995). Emotions: Clues from the brain. Annual Reviews: Psychology, 46, 209–235. Google Scholar
- Levine, B., Black, S.E., Cheung, G., Campbell, A., O’Toole, C., & Schwartz, M.L. (2005). Gambling task performance in traumatic brain injury: relationships to injury severity, atrophy, lesion location, and cognitive and psychosocial outcome. Cognitive and Behavioral Neurology, 18(1), 45–54. CrossRef Google Scholar PubMed
- Ley, R.G., & Bryden, M.P. (1979). Hemispheric differences in processing emotions and faces. Brain and Language, 7(1), 127–138. CrossRef Google Scholar PubMed
- Lieberman, M.D. (2007). Social cognitive neuroscience: A review of core processes. Annual Review of Psychology, 58, 259–289. CrossRef Google Scholar PubMed
- Lindquist, K.A., Wager, T.D., Kober, H., Bliss-Moreau, E., & Barrett, L.F. (2012). The brain basis of emotion: A meta-analytic review. Behavioral and Brain Sciences, 35(3), 121–143. CrossRef Google Scholar PubMed
- Loo, C.K., Alonzo, A., Martin, D., Mitchell, P.B., Galvez, V., & Sachdev, P. (2012). Transcranial direct current stimulation for depression: 3-week, randomised, sham-controlled trial. British Journal of Psychiatry, 200(1), 52–59. CrossRef Google Scholar PubMed
- Luria, A.R. (1973). The working brain. London: Allen Lane: The Penguin Press. Google Scholar
- McDonald, S. (2012). New frontiers in neuropsychological assessment: Assessing social perception using a standardised instrument, the Awareness of Social Inference Test. Australian Psychologist, 47(1), 39–48. CrossRef Google Scholar
- McDonald, S., Fisher, A., Togher, L., Tate, R., Rushby, J., English, T., & Francis, H. (2015). Adolescent performance on The Awareness of Social Inference Test: TASIT. Brain Impairment, 16(1), 3–18. CrossRef Google Scholar
- McDonald, S., Flanagan, S., Martin, I., & Saunders, C. (2004). The ecological validity of TASIT: A test of social perception. Neuropsychological Rehabilitation, 14, 285–302. CrossRef Google Scholar
- McDonald, S., Flanagan, S., & Rollins, J. (2011). The Awareness of Social Inference Test (Revised). Sydney, Australia: Pearson Assessment. Google Scholar
- McDonald, S., Flanagan, S., Rollins, J., & Kinch, J. (2003). TASIT: A new clinical tool for assessing social perception after traumatic brain injury. Journal of Head Trauma Rehabilitation, 18, 219–238. CrossRef Google Scholar PubMed
- McDonald, S., Li, S., De Sousa, A., Rushby, J., Dimoska, A., James, C., & Tate, R.L. (2011). Impaired mimicry response to angry faces following severe traumatic brain injury. Journal of Clinical and Experimental Neuropsychology, 33(1), 17–29. CrossRef Google Scholar PubMed
- McDonald, S., Rushby, J., Li, S., de Sousa, A., Dimoska, A., James, C., & Togher, L. (2011). The influence of attention and arousal on emotion perception in adults with severe traumatic brain injury. International Journal of Psychophysiology, 82(1), 124–131. CrossRef Google Scholar PubMed
- Mitchell, R.L.C., & Phillips, L.H. (2015). The overlapping relationship between emotion perception and theory of mind. Neuropsychologia, 70, 1–10. CrossRef Google Scholar PubMed
- Molenberghs, P., Cunnington, R., & Mattingley, J.B. (2012). Brain regions with mirror properties: A meta-analysis of 125 human fMRI studies. Neuroscience and Biobehavioral Reviews, 36(1), 341–349. CrossRef Google Scholar PubMed
- Molenberghs, P., Johnson, H., Henry, J.D., & Mattingley, J.B. (2016). Understanding the minds of others: A neuroimaging meta-analysis. Neuroscience and Biobehavioral Reviews, 65, 276–291. CrossRef Google Scholar PubMed
- Morris, J.S., DeGelder, B., Weiskrantz, L., & Dolan, R.J. (2001). Differential extrageniculostriate and amygdala responses to presentation of emotional faces in a cortically blind field. Brain, 124(6), 1241–1252. CrossRef Google Scholar
- Morris, J.S., Frith, C.D., Perrett, D.I., Rowland, D., Young, A.W., Calder, A.J., & Dolan, R.J. (1996). A differential neural response in the human amygdala to fearful and happy facial expressions. Nature, 383(6603), 812–815. CrossRef Google Scholar PubMed
- Mukamel, R., Ekstrom, A.D., Kaplan, J.T., Iacoboni, M., & Fried, I. (2010). Single-neuron responses in humans during execution and observation of actions. Current Biology, 20, 750–756. CrossRef Google Scholar PubMed
- Naccache, L., Dehaene, S., Cohen, L., Habert, M.-O., Guichart-Gomez, E., Galanaud, D., & Willer, J.-C. (2005). Effortless control: Executive attention and conscious feeling of mental effort are dissociable. Neuropsychologia, 43(9), 1318–1328. CrossRef Google Scholar PubMed
- Niedenthal, P.M., Brauer, M., Halberstadt, J.B., & Innes-Ker, Å.H. (2001). When did her smile drop? Facial mimicry and the influences of emotional state on the detection of change in emotional expression. Cognition & Emotion, 15(6), 853–864. CrossRef Google Scholar
- Nowicki, S. (2010). Manual for the receptive tests of the Diagnostic Analysis of Nonverbal Accuracy 2 (DANVA2). Atlanta, GA: Available from Dr Stephen Nowicki, Jr., Department of Psychology, Emory University, email: snowick@emory.edu. Google Scholar
- Nuechterlein, K.H., Green, M.F., Kern, R.S., Baade, L.E., Barch, D.M., Cohen, J.D., & Marder, S.R. (2008). The MATRICS Consensus Cognitive Battery, Part 1: Test selection, reliability, and validity. American Journal of Psychiatry, 165(2), 203–213. CrossRef Google Scholar PubMed
- Ohman, A., & Soares, J.J.F. (1994). “Unconscious anxiety”: Phobic responses to masked stimuli. Journal of Abnormal Psychology, 103(2), 231–240. CrossRef Google Scholar PubMed
- Park, S., Matthews, N., & Gibson, C. (2008). Imitation, simulation, and schizophrenia. Schizophrenia Bulletin, 34(4), 698–707. CrossRef Google Scholar
- Penn, D.L., Corrigan, P.W., Bentall, R.P., Racenstein, J.M., & Newman, L. (1997). Social cognition in schizophrenia. Psychological Bulletin, 121, 114–132. CrossRef Google Scholar PubMed
- Pfeifer, J.H., Iacoboni, M., Mazziotta, J.C., & Dapretto, M. (2008). Mirroring others’ emotions relates to empathy and interpersonal competence in children. Neuroimage, 39(4), 2076–2085. CrossRef Google Scholar PubMed
- Phillips, M.L. (2003). Understanding the neurobiology of emotion perception: Implications for psychiatry. British Journal of Psychiatry, 182(3), 190–192. CrossRef Google Scholar PubMed
- Phillips, M.L., Drevets, W.C., Rauch, S.L., & Lane, R. (2003). Neurobiology of emotion perception I: The neural basis of normal emotion perception. Society of Biological Psychiatry, 54, 504–514. CrossRef Google Scholar PubMed
- Pistoia, F., Conson, M., Trojano, L., Grossi, D., Ponari, M., Colonnese, C., & Sara, M. (2010). Impaired conscious recognition of negative facial expressions in patients with locked-in syndrome. The Journal of Neuroscience, 30(23), 7838–7844. CrossRef Google Scholar PubMed
- Price, C.J. (2012). A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. NeuroImage, 62, 816–847. CrossRef Google Scholar
- Raz, G., Jacob, Y., Gonen, T., Winetraub, Y., Flash, T., Soreq, E., & Hendler, T. (2013). Cry for her or cry with her: context-dependent dissociation of two modes of cinematic empathy reflected in network cohesion dynamics. Social Cognitive and Affective Neuroscience, 9(1), 30–38. CrossRef Google Scholar
- Reuter-Lorenz, P., & Davidson, R.J. (1981). Differential contributions of the two cerebral hemispheres to the perception of happy and sad faces. Neuropsychologia, 19, 609–613. CrossRef Google Scholar PubMed
- Reynders, H.J., Broks, P., Dickson, J.M., Lee, C.E., & Turpin, G. (2005). Investigation of social and emotion information processing in temporal lobe epilepsy with ictal fear. Epilepsy & Behavior, 7(3), 419–429. CrossRef Google Scholar PubMed
- Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Brain Research Cognitive Brain Research, 3(2), 131–141. CrossRef Google Scholar PubMed
- Rizzolatti, G., & Sinigaglia, C. (2010). The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations. Nature Reviews Neuroscience, 11(4), 264–274. CrossRef Google Scholar PubMed
- Roelofs, R.L., Wingbermühle, E., Egger, J.I.M., & Kessels, R.P.C. (2017). Social cognitive interventions in neuropsychiatric patients: A meta-analysis. Brain Impairment, 18(1), 138–173. CrossRef Google Scholar
- Rolls, E.T. (2000). Memory systems in the brain. Annual Review of Psychology, 51, 599–630. CrossRef Google Scholar
- Rosenberg, H., McDonald, S., Rosenberg, J., & Westbrook, R.F. (2016). Measuring emotion perception following traumatic brain injury: The Complex Audio Visual Emotion Assessment Task (CAVEAT). Neuropsychological Rehabilitation, 1–19. CrossRef Google Scholar
- Ross, E.D. (1981). The aprosodias: Functional-anatomic organisation of the affective components of language in the right hemisphere. Archives of Neurology, 38, 561–569. CrossRef Google Scholar PubMed
- Ross, E.D., & Mesulam, M.-M. (1979). Dominant language functions of the right hemisphere? Prosody and emotional gesturing. Archives of Neurology, 36(3), 144–148. CrossRef Google Scholar PubMed
- Sackeim, H.A., Greenberg, M.S., Weiman, A.L., Gur, R.C., Hungerbuhler, J.P., & Geschwind, N. (1982). Hemispheric asymmetry in the expression of positive and negative emotions. Archives of Neurology, 39, 210–218. CrossRef Google Scholar PubMed
- Savla, G.N., Vella, L., Armstrong, C.C., Penn, D.L., & Twamley, E.W. (2013). Deficits in domains of social cognition in schizophrenia: A meta-analysis of the empirical evidence. Schizophrenia Bulletin, 39(5), 979–992. CrossRef Google Scholar PubMed
- Satpute, A.B., Kang, J., Bickart, K.C., Yardley, H., Wager, T.D., & Barrett, L.F. (2015). Involvement of sensory regions in affective experience: A meta-analysis. Frontiers in Psychology, 6, 1860. CrossRef Google Scholar PubMed
- Saunders, J.C., McDonald, S., & Richardson, R. (2006). Loss of emotional experience after traumatic brain injury: Findings with the startle probe procedure. Neuropsychology, 20(2), 224–231. CrossRef Google Scholar PubMed
- Schaefer, M., Heinze, H.-J., & Rotte, M. (2012). Embodied empathy for tactile events: Interindividual differences and vicarious somatosensory responses during touch observation. Neuroimage, 60(2), 952–957. CrossRef Google Scholar PubMed
- Scott, S.K., Young, A.W., Calder, A.J., Hellawell, D.J., Aggleton, J.P., & Johnson, M. (1997). Impaired auditory recognition of fear and anger following bilateral amygdala lesions. Nature, 385(6613), 254–257. CrossRef Google Scholar PubMed
- Sergerie, K., Chochol, C., & Armony, J.L. (2008). The role of the amygdala in emotional processing: A quantitative meta-analysis of functional neuroimaging studies. Neuroscience & Biobehavioral Reviews, 32(4), 811–830. CrossRef Google Scholar PubMed
- Shamay-Tsoory, S.G., Tomer, R., Berger, B.D., Goldsher, D., & Aharon-Peretz, J. (2005). Impaired “affective theory of mind” is associated with right ventromedial prefrontal damage. Cognitive and Behavioral Neurology, 18(1), 55–67. CrossRef Google Scholar PubMed
- Shimokawa, A., Yatomi, N., Anamizu, S., Torii, S., Isono, H., Sugai, Y., & Kohno, M. (2001). Influence of deteriorating ability of emotional comprehension on interpersonal behavior in Alzheimer-type dementia. Brain and Cognition, 47(3), 423–433. CrossRef Google Scholar PubMed
- Silberman, E.K., & Weingartner, H. (1986). Hemispheric lateralization of functions related to emotion. Brain and Cognition, 5(3), 322–353. CrossRef Google Scholar
- Sonnby-Borgström, M., Jönsson, P., & Svensson, O. (2003). Emotional empathy as related to mimicry reactions at different levels of information processing. Journal of Nonverbal Behavior, 27(1), 3–23. CrossRef Google Scholar
- Spikman, J.M., Milders, M.V., Visser-Keizer, A.C., Westerhof-Evers, H.J., Herben-Dekker, M., & van der Naalt, J. (2013). Deficits in facial emotion recognition indicate behavioral changes and impaired self-awareness after moderate to severe traumatic brain injury. PLoS One, 8(6), e65581. doi: 10.1371/journal.pone.0065581 CrossRef Google Scholar PubMed
- Spikman, J.M., Timmerman, M.E., Milders, M.V., Veenstra, W.S., & van der Naalt, J. (2012). Social cognition impairments in relation to general cognitive deficits, injury severity, and prefrontal lesions in traumatic brain injury patients. Journal of Neurotrauma, 29(1), 101–111. CrossRef Google Scholar PubMed
- Sprengelmeyer, R., Young, A.W., Calder, A.J., Karnat, A., Lange, H., Homber, G.V., & Rowland, D. (1996). Loss of disgust: Perception of faces and emotions in Huntington’s disease. Brain: A Journal of Neurology, 119(5), 1647–1665. CrossRef Google Scholar
- Stuss, D.T., & Benson, D.F. (1986). The frontal lobes. New York: Raven Press. Google Scholar PubMed
- Toplak, M.E., Sorge, G.B., Benoit, A., West, R.F., & Stanovich, K.E. (2010). Decision-making and cognitive abilities: A review of associations between Iowa Gambling Task performance, executive functions, and intelligence. Clinical Psychology Review, 30(5), 562–581. CrossRef Google Scholar PubMed
- Wapner, W., Hamby, S., & Gardner, H. (1981). The role of the right hemisphere in the apprehension of complex linguistic materials. Brain and Language, 14, 15–32. CrossRef Google Scholar PubMed
- Wechsler, D. (2009). Advanced clinical solutions for WAIS-IV and WMS-IV: Administration and scoring manual. San Antonio, TX: Pearson Assessment. Google Scholar
- Weinstein, E.A., & Kahn, R.C. (1955). Denial of illness: Symbolic and physiologic aspects. Springfield IL: Thomas. CrossRef Google Scholar
- Wiig, E., & Secord, W. (2014). Clinical evaluation of language fundamentals. USA: Pearson Assessment. Google Scholar
- Wilde, E.A., Whiteneck, G.G., Bogner, J., Bushnik, T., Cifu, D.X., Dikmen, S., & von Steinbuechel, N. (2010). Recommendations for the use of common outcome measures in traumatic brain injury research. Archives of Physical Medicine and Rehabilitation, 91(11), 1650–1660.e1617. CrossRef Google Scholar
- Williams, C., & Wood, R.L. (2010). Alexithymia and emotional empathy following traumatic brain injury. Journal of Clinical and Experimental Neuropsychology, 32(3), 259–267. CrossRef Google Scholar PubMed
- Williams, C., & Wood, R.L. (2012). Affective modulation of the startle reflex following traumatic brain injury. Journal of Clinical and Experimental Neuropsychology, 34(9), 948–961. CrossRef Google Scholar PubMed
- Wood, R.L., & Williams, C. (2008). Inability to empathize following traumatic brain injury. Journal of the International Neuropsychological Society, 14, 289–296. CrossRef Google Scholar PubMed
- Yeates, K.O., Swift, E., Taylor, H.G., Wade, S.L., Drotar, D., Stancin, T., & Minich, N. (2004). Short- and long-term social outcomes following pediatric traumatic brain injury. Journal of the International Neuropsychological Society, 10(3), 412–426. CrossRef Google Scholar
The past 30 years of research on human amnesia has yielded important changes in our understanding of the role of the medial temporal lobes (MTL) in memory. On the onehand, this body of evidence has highlighted that not all types of memory are impaired in patients with MTL lesions. On the other hand, this research has made apparentthat the role of the MTL extends beyond the domain of long-term memory, to include working memory, perception, and future thinking. In this article, we review thediscoveries and controversies that have characterized this literature and that set the stage for a new conceptualization of the role of the MTL in cognition. Thisshift toward a more nuanced understanding of MTL function has direct relevance for a range of clinical disorders in which the MTL is implicated, potentially shapingnot only theoretical understanding but also clinical practice. (JINS, 2017, 23, 732–740)
- Aggleton, J.P., & Shaw, C. (1996). Amnesia and recognition memory: A re-analysis of psychometric data. Neuropsychologia, 34, 51–62. CrossRef Google Scholar PubMed
- Baddeley, A., & Warrington, E.K. (1970). Amnesia and the distinction between long- and short-term memory. Journal of Verbal Learning and Verbal Behavior, 9, 176–189. CrossRef Google Scholar
- Barense, M.D., Ngo, J.K.W., Hung, L.H.T., & Peterson, M.A. (2012). Interactions of memory and perception in amnesia: The figure-ground perspective. Cerebral Cortex, 22, 2680–2691. CrossRef Google Scholar PubMed
- Barnabe, A., Whitehead, V., Pilon, R., Arsenault-Lapierre, G., & Chertkow, H. (2012). Autobiographical memory in mild cognitive impairment and Alzheimer’s disease: A comparison between the Levine and Kopelman interview methodologies. Hippocampus, 22, 1809–1825. CrossRef Google Scholar PubMed
- Ben-Zvi, S., Soroker, N., & Levy, D.A. (2015). Parietal lesion effects on cued recall following pair associate learning. Neuropsychologia, 73, 176–194. CrossRef Google Scholar PubMed
- Berryhill, M.E., Phuong, L., Picasso, L., Cabeza, R., & Olson, I.R. (2007). Parietal damage and episodic memory: Bilateral damage causes impaired free recall of autobiographical memory. Journal of Neuroscience, 27, 14415–14423. CrossRef Google Scholar PubMed
- Bertossi, E., Aleo, F., Braghittoni, D., & Ciaramelli, E. (2016). Stuck in the here and now: Construction of fictitious and future experiences following ventromedial prefrontal damage. Neuropsychologia, 81, 107–116. CrossRef Google Scholar PubMed
- Blackwell, A.D., Sahakian, B.J., Vesey, R., Semple, J.M., Robbins, T.W., & Hodges, J.R. (2004). Detecting dementia: Novel neuropsychological markers of preclinical Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders, 17, 42–48. CrossRef Google Scholar PubMed
- Bohbot, V.D., Kalina, M., Stepankova, K., Spackova, M., Petrides, M., & Nadel, L. (1998). Spatial memory deficits in patients with lesions to the right hippocampus and to the right parahippocampal cortex. Neuropsychologia, 36, 1217–1238. CrossRef Google Scholar PubMed
- Borders, A.A., Aly, M., Parks, C.M., & Yonelinas, A.P. (2017). The hippocampus is particularly important for building associations across stimulus domains. Neuropsychologia, 99, 335–342. CrossRef Google Scholar PubMed
- Bowles, B., Crupi, C., Mirsattari, S.M., Pigott, S.E., Parrent, A.G., Pruessner, J.C., & Kohler, S. (2007). Impaired familiarity with preserved recollection after anterior temporal-lobe resection that spares the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 104, 16382–16387. CrossRef Google Scholar
- Bowles, B., Crupi, C., Pigott, S., Parrent, A., Wiebe, S., Janzen, L., && Kohler, S. (2010). Double dissociation of selective recollection and familiarity impairments following two different surgical treatments for temporal-lobe epilepsy. Neuropsychologia, 48, 2640–2647. CrossRef Google Scholar PubMed
- Cohen, N.J., & Eichenbaum, H. (1993). Memory, amnesia, and the hippocampal system. Cambridge, MA: MIT Press. Google Scholar
- Dede, A.J.O., & Smith, C.N. (2016). The functional and structural neuroanatomy of systems consolidation for autobiographical and semantic memory. Current Topics in Behavioral Neuroscience. [Epub ahead of print]. doi: 10.1007/7854_2016_452 CrossRef Google Scholar
- Della Sala, S., Parra, M.A., Fabi, K., Luzzi, S., & Abrahams, S. (2012). Short-term memory binding is impaired in AD but not in non-AD dementias. Neuropsychologia, 50, 833–840. CrossRef Google Scholar PubMed
- Dewar, M., Della Sala, S., Beschin, N., & Cowan, N. (2010). Profound retrograde interference in anterograde amnesia: What interferes? Neuropsychology, 24, 357–367. CrossRef Google Scholar
- Diana, R.A., Yonelinas, A.P., & Ranganath, C. (2007). Imaging recollection and familiarity in the medial temporal lobe: A three-component model. Trends in Cognitive Sciences, 11, 379–386. CrossRef Google Scholar PubMed
- Duff, M.C., Kurczek, J., Rubin, R., Cohen, N.J., & Tranel, D. (2013). Hippocampal amnesia disrupts creative thinking. Hippocampus, 23, 1143–1149. CrossRef Google Scholar PubMed
- Eichenbaum, H., Yonelinas, A.R., & Ranganath, C. (2007). The medial temporal lobe and recognition memory. Annual Review of Neuroscience, 30, 123–152. CrossRef Google Scholar PubMed
- Foerde, K., Race, E., Verfaellie, M., & Shohamy, D. (2013). A role for the medial temporal lobe in feedback-driven learning: Evidence from amnesia. Journal of Neuroscience, 33, 5698–5704. CrossRef Google Scholar PubMed
- Giovanello, K.S., Verfaellie, M., & Keane, M.M. (2003). Disproportionate deficit in associative recognition memory in global amnesia. Cognitive, Affective and Behavioral Neuroscience, 3, 186–194. CrossRef Google Scholar PubMed
- Graham, K.S., Barense, M.D., & Lee, A.C.H. (2010). Going beyond LTM in the MTL: A synthesis of neuropsychological and neuroimaging findings on the role of the medial temporal lobe in memory and perception. Neuropsychologia, 48, 831–853. CrossRef Google Scholar PubMed
- Hanula, D.E., Tranel, D., & Cohen, N.J. (2006). The long and the short of it: Relational memory impairments in amnesia, even at short lags. Journal of Neuroscience, 26, 8352–8359. CrossRef Google Scholar
- Hassabis, D., Kumaran, D., Vann, S., & Maguire, E. (2007). Patients with hippocampal amnesia cannot imagine new experiences. Proceedings of the National Academy of Sciences of the United States of America, 104, 1726–1731. CrossRef Google Scholar PubMed
- Hayes, S.M., Salat, D.H., & Verfaellie, M. (2012). Default network connectivity in medial temporal lobe amnesia. Journal of Neuroscience, 32, 14622–14629. CrossRef Google Scholar PubMed
- Henson, R.N., Greve, A., Cooper, E., Gregori, M., Simons, J.S., Geerligs, L., & Browne, G. (2016). The effects of hippocampal lesions on MRI measures of structural and functional connectivity. Hippocampus, 26, 1447–1463. CrossRef Google Scholar PubMed
- Jeneson, A., & Squire, L.R. (2012). Working memory, long-term memory, and medial temporal lobe function. Learning and Memory, 19, 15–25. CrossRef Google Scholar PubMed
- Jones, D.T., Mateen, F.J., Lucchinetti, C.F., Jack, C.R., & Welker, K.M. (2011). Default mode network disruption secondary to a lesion in the anterior thalamus. Archives of Neurology, 68, 242–247. CrossRef Google Scholar PubMed
- Kan, I.P., Giovanello, K.S., Schnyer, D.M., Makris, N., & Verfaellie, M. (2007). Role of the medial temporal lobes in relational memory: Neuropsychological evidence from a cued recognition paradigm. Neuropsychologia, 45, 2589–2597. CrossRef Google Scholar PubMed
- Kirwan, C., Bayley, P.J., Galvan, V., & Squire, L.R. (2008). Detailed recollection of remote autobiographical memory after damage to the medial temporal lobe. Proceedings of the National Academy of Sciences of the United States of America, 105, 2676–2680. CrossRef Google Scholar PubMed
- Knowlton, B.J., Mangels, J.A., & Squire, L.R. (1996). A neostriatal habit-learning system in humans. Science, 273, 1399–1402. CrossRef Google Scholar PubMed
- Knowlton, B.J., Ramus, S.J., & Squire, L.R. (1992). Intact artificial grammar learning in amnesia: Dissociation of classification learning and explicit memory for specific instances. Psychological Science, 3, 172–179. CrossRef Google Scholar
- Knutson, A.R., Hopkins, R.A., & Squire, L.R. (2012). Visual discrimination performance, memory, and medial temporal lobe function. Proceedings of the National Academy of Sciences of the United States of America, 109, 13106–13111. CrossRef Google Scholar PubMed
- Knutson, A.R., Hopkins, R.A., & Squire, L.R. (2013). A pencil rescues impaired performance on a visual discrimination task in patients with medial temporal lobe lesions. Learning and Memory, 20, 607–610. CrossRef Google Scholar PubMed
- Koen, J.D., Borders, A.A., Petzold, M.T., & Yonelinas, A.P. (2016). Visual short-term memory for high resolution associations is impaired in patients with medial temporal lobe damage. Hippocampus, 27, 184–193. CrossRef Google Scholar PubMed
- Lah, S., & Miller, L. (2008). Effects of temporal lobe lesions on retrograde amnesia: A critical review. Neuropsychological Review, 18, 24–52. CrossRef Google Scholar
- Lee, A.C.H., Buckley, M.J., Pegman, S.J., Spiers, H.J., Scahill, V.L., Gaffan, D., & Graham, K.S. (2005). Specialization in the medial temporal lobe for processing of objects and scenes. Hippocampus, 15, 782–797. CrossRef Google Scholar PubMed
- Lee, A.C.H., Bussey, T.J., Murray, E.A., Saksida, L.M., Epstein, R.A., Kapur, N., & Graham, K.S. (2005). Perceptual deficits in amnesia: Challenging the medial temporal lobe “mnemonic” view. Neuropsychologia, 43, 1–11. CrossRef Google Scholar PubMed
- Lee, A.C.H., Rahman, S., Hodges, J.R., Sahakian, B.J., & Graham, K.S. (2003). Associative and recognition memory for novel objects in dementia: Implications for diagnosis. European Journal of Neuroscience, 18, 1660–1670. CrossRef Google Scholar PubMed
- Lee, A.C.H., & Rudebeck, S.R. (2010). Human medial temporal lobe damage can disrupt the perception of single objects. Journal of Neuroscience, 30, 6588–6594. CrossRef Google Scholar
- Lee, A.C.H., Yeung, L.K., & Barense, M.D. (2012). The hippocampus and visual perception. Frontiers in Human Neuroscience, 6, 1–17. CrossRef Google Scholar PubMed
- Levine, B., Svoboda, E., Hay, J.F., Winocur, G., & Moscovitch, M. (2002). Aging and autobiographical memory: Dissociating episodic from semantic retrieval. Psychology and Aging, 17, 677–689. CrossRef Google Scholar PubMed
- Mayes, A.R., Montaldi, D., & Migo, E. (2007). Associative memory and the medial temporal lobes. Trends in Cognitive Sciences, 11, 126–135. CrossRef Google Scholar PubMed
- Mayes, A.R., Holdstock, J.S., Isaac, C.L., Montaldi, D., Grigor, J., Gummer, A., & Norman, K.A. (2004). Associative recognition in a patient with selective hippocampal lesions and relatively normal item recognition. Hippocampus, 14, 763–784. CrossRef Google Scholar
- Milner, B. (1962). Les troubles de la memoire accompagnant des lesions hippocampiques bilaterales [Memory impairment accompanying bilateral hippocampal lesions]. In P. Passouant (Ed.), Physiologie de I’Hippocampe (pp. 257–272). Paris: C.N.R.S. Google Scholar
- Milner, B., Corkin, S., & Teuber, H.-L. (1968). Further analysis of the hippocampal amnesia syndrome: 14-year follow-up study of H.M. Neuropsychologia, 6, 215–234. CrossRef Google Scholar
- Moscovitch, M., Nadel, L., Winocur, G., Gilboa, A., & Rosenbaum, R.S. (2006). The cognitive neuroscience of remote episodic, semantic and spatial memory. Current Opinion in Neurobiology, 16, 179–190. CrossRef Google Scholar PubMed
- Moscovitch, M., Vriezen, E., & Gottstein, J. (1993). Implicit tests of memory in patients with focal lesions or degenerative brain disorders. In H. Spinnler & F. Boller (Eds.), Handbook of neuropsychology (Vol. 8, pp. 133–173). Amsterdam: Elsevier. Google Scholar
- Nadel, L., & Moscovitch, M.M. (1997). Memory consolidation, retrograde amnesia and the hippocampal complex. Current Opinion in Neurobiology, 7, 217–227. CrossRef Google Scholar PubMed
- Olson, I.R., Page, K., Moore, K.S., Chatterjee, A., & Verfaellie, M. (2006). Working memory for conjunctions relies on the medial temporal lobe. Journal of Neuroscience, 26, 4596–4601. CrossRef Google Scholar PubMed
- Palombo, D.J., Keane, M.M., & Verfaellie, M. (2015). The medial temporal lobes are critical for reward-based decision making under conditions that promote episodic future thinking. Hippocampus, 23, 345–353. CrossRef Google Scholar
- Palombo, D.J., Keane, M.M., & Verfaellie, M. (2016). Using future thinking to reduce temporal discounting: Under what circumstances are the medial temporal lobes critical? Neuropsychologia, 89, 437–444. CrossRef Google Scholar PubMed
- Pertzov, Y., Miller, T.D., Gorgoraptis, N., Caine, D., Schott, J.M., Butler, C., & Husain, M. (2013). Binding deficits in memory following medial temporal lobe damage in patients with voltage-gated potassium channel complex antibody-associated limbic encephalitis. Brain, 136, 2474–2485. CrossRef Google Scholar PubMed
- Quamme, J.R., Yonelinas, A.P., & Norman, K.A. (2007). Effect of unitization on associative recognition in amnesia. Hippocampus, 17, 192–200. CrossRef Google Scholar PubMed
- Race, E., Keane, M.M., & Verfaellie, M. (2011). Medial temporal lobe damage causes deficits in episodic memory and episodic future thinking not attributable to deficits in narrative construction. Journal of Neuroscience, 31, 10262–10269. CrossRef Google Scholar
- Race, E., LaRocque, K.F., Keane, M.M., & Verfaellie, M. (2013). Medial temporal lobe contributions to short-term memory for faces. Journal of Experimental Psychology: General, 142, 1309–1322. CrossRef Google Scholar PubMed
- Reber, P.J. (2013). The neural basis of implicit learning and memory: A review of neuropsychological and neuroimaging research. Neuropsychologia, 51, 2026–2042. CrossRef Google Scholar PubMed
- Reed, L.J., Lasserson, D., Marsden, P., Stanhope, N., Stevens, T., Bello, F., & Kopelman, M. (2003). FDG-PET findings in the Wernicke-Korsakoff syndrome. Cortex, 39, 1027–1045. CrossRef Google Scholar PubMed
- Reed, L.J., Marsden, P., Lasserson, D., Sheldon, N., Lewis, P., Stanhope, N., & Kopelman, M.D. (1999). FDG-PET analysis and findings in amnesia resulting from hypoxia. Memory, 7, 599–612. CrossRef Google Scholar PubMed
- Rensen, Y.C.M., Kessels, R.P.C., Migo, E.M., Wester, A.J., Eling, P.A.T.M., & Kopelman, M. (2017). Personal semantic and episodic autobiographical memories in Korsakoff syndrome: A comparison of interview methods. Journal of Clinical and Experimental Neuropsychology, 39, 534–546. CrossRef Google Scholar PubMed
- Romero, K., & Moscovitch, M. (2012). Episodic memory and event construction in aging and amnesia. Journal of Memory and Language, 67, 270–284. CrossRef Google Scholar
- Rosenbaum, R.S., Gilboa, A., & Moscovitch, M. (2014). Case studies continue to illuminate the cognitive neuroscience of memory. Annals of the New York Academy of Sciences, 1316, 105–133. CrossRef Google Scholar PubMed
- Rosenbaum, R.S., Moscovitch, M., Foster, J.K., Schnyer, D.M., Gao, F.Q., Kovacevic, N., & Levine, B. (2008). Patterns of autobiographical memory loss in medial temporal lobe amnesic patients. Journal of Cognitive Neuroscience, 20, 1490–1506. CrossRef Google Scholar PubMed
- Sadeh, T., Ozubko, J., & Moscovitch, M. (2014). How we forget may depend on how we remember. Trends in Cognitive Sciences, 18, 26–36. CrossRef Google Scholar PubMed
- Schacter, D.L., Addis, D.R., & Buckner, R.L. (2007). Remembering the past to imagine the future: The prospective brain. Nature Reviews Neuroscience, 8, 657–661. CrossRef Google Scholar PubMed
- Scoville, W., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery, and Psychiatry, 20, 11–21. CrossRef Google Scholar PubMed
- Sheldon, S., McAndrews, M.P., & Moscovitch, M. (2011). Episodic memory processes mediated by the medial temporal lobes contribute to open-ended problem solving. Neuropsychologia, 49, 2439–2447. CrossRef Google Scholar PubMed
- Shohamy, D., Myers, C.E., Kalanithi, J., & Gluck, M.A. (2008). Basal ganglia and dopamine contributions to probabilistic category learning. Neuroscience and Biobehavioral Reviews, 32, 219–236. CrossRef Google Scholar PubMed
- Shohamy, D., & Turk-Browne, N.B. (2013). Mechanisms for widespread hippocampal involvement in cognition. Journal of Experimental Psychology: General, 142, 1159–1170. CrossRef Google Scholar PubMed
- Squire, L.R., & Alvarez, P. (1995). Retrograde amnesia and memory consolidation: A neurobiological perspective. Current Opinion in Neurobiology, 5, 169–177. CrossRef Google Scholar PubMed
- Squire, L.R., Stark, C.E.L., & Clark, R.E. (2004). The medial temporal lobe. Annual Review of Neuroscience, 27, 279–306. CrossRef Google Scholar PubMed
- Squire, L.R., van der Horst, A.S., McDuff, S.G., Frascino, J.C., Hopkins, R.O., & Mauldin, K.N. (2010). Role of the hippocampus in remembering the past and imagining the future. Proceedings of the National Academy of Sciences of the United States of America, 107, 19044–19048. CrossRef Google Scholar PubMed
- Squire, L.R., & Wixted, J.T. (2011). The cognitive neuroscience of human memory since H.M. Annual Review of Neuroscience, 34, 259–288. CrossRef Google Scholar PubMed
- Vargha-Khadem, F., Gadian, D.G., Watkins, K.E., Connelly, A., Van Paesschen, W., & Mishkin, M. (1997). Differential effects of early hippocampal pathology on episodic and semantic memory. Science, 277, 376–380. CrossRef Google Scholar PubMed
- Verfaellie, M., & Keane, M.M. (2001). Scope and limits of implicit memory in amnesia. In B. De Gelder, E. De Haan & C. Heywood (Eds.), Unconscious minds (pp. 151–162). Oxford: Oxford University Press. Google Scholar
- Verfaellie, M., & Keane, M.M. (2002). Impaired and preserved memory processes in amnesia. In L.R. Squire & D.L. Schacter (Eds.), Neuropsychology of memory (3rd ed., pp. 35–46). New York: Guilford Press. Google Scholar
- Verfaellie, M., LaRocque, K.F., & Keane, M.M. (2012). Intact implicit verbal relational memory in medial temporal lobe amnesia. Neuropsychologia, 50, 2100–2106. CrossRef Google Scholar
- Verfaellie, M., Race, E., & Keane, M.M. (2012). Medial temporal lobe contributions to future thinking: Evidence from neuroimaging and amnesia. Psychologica Belgica, 52, 77–94. CrossRef Google Scholar PubMed
- Watson, P.D., Voss, J.L., Warren, D.E., Tranel, D., & Cohen, N.J. (2013). Spatial reconstruction by patients with hippocampal damage is dominated by relational memory errors. Hippocampus, 23, 570–580. CrossRef Google Scholar PubMed
- Winocur, G., Moscovitch, M., & Bontempi, B. (2010). Memory formation and long-term retention in humans and animals: Convergence towards a transformation account of hippocampal–neocortical interactions. Neuropsychologia, 48, 2339–2356. CrossRef Google Scholar PubMed
- Wixted, J.T., & Squire, L.R. (2011). The medial temporal lobe and the attributes of memory. Trends in Cognitive Sciences, 15, 210–217. CrossRef Google Scholar
- Yonelinas, A.P. (2013). The hippocampus supports high-resolution binding in the service of perception, working memory and long-term memory. Behavioural Brain Research, 254, 34–44. CrossRef Google Scholar PubMed
Studies of language disorders have shaped our understanding of brain–language relationships over the last two centuries. This article provides a review of this researchand how our thinking has changed over the years regarding how the brain processes language. In the 19th century, a series of famous case studies linked distinct speechand language functions to specific portions of the left hemisphere of the brain, regions that later came to be known as Broca’s and Wernicke’s areas. One hundred yearslater, the emergence of new brain imaging tools allowed for the visualization of brain injuries in vivo that ushered in a new era of brain-behaviorresearch and greatly expanded our understanding of the neural processes of language. Toward the end of the 20th century, sophisticated neuroimaging approaches allowedfor the visualization of both structural and functional brain activity associated with language processing in both healthy individuals and in those with language disturbance.More recently, language is thought to be mediated by a much broader expanse of neural networks that covers a large number of cortical and subcortical regions and theirinterconnecting fiber pathways. Injury to both grey and white matter has been seen to affect the complexities of language in unique ways that have altered how we thinkabout brain–language relationships. The findings that support this paradigm shift are described here along with the methodologies that helped to discover them, withsome final thoughts on future directions, techniques, and treatment interventions for those with communication impairments. (JINS, 2017,23, 741–754)
- Aflalo, T., Kellis, S., Klaes, C., Lee, B., Shi, Y., Pejsa, K., & Andersen, R. (2015). Decoding motor imagery from the posterior parietal cortex of a tetraplecig human. Science, 348(6237), 906–910. https://doi.org/10.7910/DVN/GJDUTV CrossRef Google Scholar PubMed
- Alexander, A.L., Lee, J.E., Lazar, M., & Field, A.S. (2007). Diffusion tensor imaging of the brain. Neurotherapeutics, 4(3), 316–329. CrossRef Google Scholar
- Amunts, K., Lepage, C., Borgeat, L., Mohlberg, H., Dickscheid, T., Rousseau, M., & Evans, A. (2013). BigBrain: An ultrahigh-resolution 3D human brain model. Science, 21, 1472–1475. CrossRef Google Scholar
- Arévalo, A., Perani, D., Cappa, S., Butler, A., Bates, E., & Dronkers, N. (2007). Action and object processing in aphasia: From nouns and verbs to the effect of manipulability [corrected] [published erratum appears in Brain Lang 2007;102:284]. Brain & Language, 100(1), 79–94. CrossRef Google Scholar
- Ashburner, J., & Friston, K.J. (2000). Voxel-based morphometry—The methods. NeuroImage, 11(6), 805–821. https://doi.org/10.1006/nimg.2000.0582 CrossRef Google Scholar
- Bajada, C.J., Lambon Ralph, M.A., & Cloutman, L.L. (2015). Transport for Language South of the Sylvian Fissure: The routes and history of the main tracts and stations in the ventral language network. Cortex, 69, 141–151. https://doi.org/10.1016/j.cortex.2015.05.011 CrossRef Google Scholar PubMed
- Baldo, J.V., Katseff, S., & Dronkers, N.F. (2012). Brain regions underlying repetition and auditory-verbal short-term memory deficits in aphasia: Evidence from voxel-based lesion symptom mapping. Aphasiology, 26, 338–354. https://doi.org/10.1080/02687038.2011.602391 CrossRef Google Scholar PubMed
- Baldo, J.V., Paulraj, S.R., Curran, B.C., & Dronkers, N.F. (2015). Impaired reasoning and problem-solving in individuals with language impairment due to aphasia or language delay. Frontiers in Psychology, 6, 1–14. https://doi.org/10.3389/fpsyg.2015.01523 CrossRef Google Scholar PubMed
- Baldo, J.V., Wilson, S.M., & Dronkers, N.F. (2012). Uncovering the neural substrates of language: A voxel-based lesion symptom mapping approach. Advances in the Neural Substrates of Language: Toward a Synthesis of Basic Science and Clinical Research, 1–18. https://doi.org/10.1002/9781118432501.ch28 Google Scholar
- Bastiaanse, R., Edwards, S., Mass, E., & Rispens, J. (2003). Assessing comprehension and production of verbs and sentences: The Verb and Sentence Test (VAST). Aphasiology, 17(1), 49–73. https://doi.org/10.1080/729254890 CrossRef Google Scholar
- Bates, E., Chen, S., Tzeng, O., Li, P., & Opie, M. (1991). The noun-verb problem in Chinese aphasia. Brain & Language, 41, 203–233. CrossRef Google Scholar PubMed
- Bates, E., Wilson, S.M., Saygin, A.P., Dick, F., Sereno, M.I., Knight, R.T., & Dronkers, N.F. (2003). Voxel-based lesion-symptom mapping. Nature Neuroscience, 6(5), 448–450. https://doi.org/10.1038/nn1050 CrossRef Google Scholar PubMed
- Bates, E., Wulfeck, B., & MacWhinney, B. (1991). Cross-linguistic research in aphasia: An overview. Brain and Language, 41(2), 123–148. https://doi.org/10.1016/0093-934X(91)90149-U CrossRef Google Scholar PubMed
- Binder, J.R., Frost, J.A., Hammeke, T.A., Cox, R.W., Rao, S.M., & Prieto, T. (1997). Human brain language areas identified by functional magnetic resonance imaging. The Journal of Neuroscience, 17(1), 353–362. Google Scholar PubMed
- Bogen, J.E., & Bogen, G.M. (1976). Wernicke’s region-Where is it? Annals of the New York Academy of Sciences, 280, 834–843. CrossRef Google Scholar
- Bornkessel-Schlesewsky, I., Schlesewsky, M., Small, S.L., & Rauschecker, J.P. (2015). Neurobiological roots of language in primate audition: Common computational properties. Trends in Cognitive Sciences, 19(3), 142–150. https://doi.org/10.1016/j.tics.2014.12.008 CrossRef Google Scholar PubMed
- Breier, J.I., Hasan, K.M., Zhang, W., Men, D., & Papanicolaou, A.C. (2008). Language dysfunction after stroke and damage to white matter tracts evaluated using diffusion tensor imaging. AJNR American Journal of Neuroradiology, 29(3), 483–487. https://doi.org/10.3174/ajnr.A0846 CrossRef Google Scholar
- Broca, P. (1861a). Nouvelle observation d’aphémie produite par une lésion de la troisième circonvolution frontale. Bulletins de La Société D’anatomie (Paris), 2e Serie, 6, 398–407. Google Scholar
- Broca, P. (1861b). Perte de la parole: Ramollissement chronique et destruction partielle du lobe anterieur gauche du cerveau. Bulletins de La Societe D’anthropologie, 1re Serie, 2, 235–238. Google Scholar
- Broca, P. (1864). Sur les mots aphemie, aphasie et aphrasie; Lettre a M. le Professeur Trousseau. Gazette Des Hopitaux, 23(janvier). Google Scholar
- Broca, P. (1865). Sur le siege de la faculte du langage articule. Bulletin de La Societe d’Anthropologie, 6, 337–393. Google Scholar
- Caramazza, A., & Hillis, A.E. (1991). Lexical organization of nouns and verbs in the brain. Nature, 349(6312), 788–790. https://doi.org/10.1038/349788a0 CrossRef Google Scholar
- Catani, M., Howard, R.J., Pajevic, S., & Jones, D.K. (2002). Virtual in vivo interactive dissection of white matter fasciculi in the human brain. NeuroImage, 17(1), 77–94. https://doi.org/10.1006/nimg.2002.1136 CrossRef Google Scholar
- Catani, M., & Mesulam, M.M. (2008). The arcuate fasciculus and the disconnection theme in language and aphasia: History and current state. Cortex, 44(8), 953–961. https://doi.org/10.1016/j.cortex.2008.04.002.The CrossRef Google Scholar
- Chang, E.F., Raygor, K.P., & Berger, M.S. (2015). Contemporary model of language organization: An overview for neurosurgeons. Journal of Neurosurgery, 122, 250–261. https://doi.org/10.3171/2014.10.JNS132647 CrossRef Google Scholar
- Cho-Reyes, S., & Thompson, C.K. (2012). Verb and sentence production and comprehension in aphasia: Northwestern Assessment of Verbs and Sentences (NAVS). Aphasiology, 26(10), 1250–1277. https://doi.org/10.1080/02687038.2012.693584 CrossRef Google Scholar
- Code, C. (2001). Multifactorial processes in recovery from aphasia: Developing the foundations for a multileveled framework. Brain and Language, 77(1), 25–44. https://doi.org/10.1006/brln.2000.2420 CrossRef Google Scholar PubMed
- Cordes, D., Haughton, V.M., Arfanakis, K., Wendt, G.J., Turski, P.A., Moritz, C.H., & Meyerand, M.E. (2000). Mapping functionally related regions of brain with functional connectivity MR imaging. AJNR American Journal of Neuroradiology, 21(9), 1636–1644. Google Scholar PubMed
- Crinion, J.T., & Leff, A.P. (2007). Recovery and treatment of aphasia after stroke: Functional imaging studies. Current Opinion in Neurology, 20(6), 667–673. https://doi.org/10.1097/WCO.0b013e3282f1c6fa CrossRef Google Scholar PubMed
- Damasio, H., Tranel, D., Grabowski, T., Adolphs, R., & Damasio, A. (2004). Neural systems behind word and concept retrieval. Cognition, 92(1–2), 179–229. https://doi.org/10.1016/j.cognition.2002.07.001 CrossRef Google Scholar PubMed
- Dehaene, S. (2009). Reading in the brain: The new science of how we read. New York, NY: Penguin Books. Google Scholar
- Dell’Acqua, F., Simmons, A., Williams, S.C.R., & Catani, M. (2013). Can spherical deconvolution provide more information than fiber orientations? Hindrance modulated orientational anisotropy, a true-tract specific index to characterize white matter diffusion. Human Brain Mapping, 34(10), 2464–2483. https://doi.org/10.1002/hbm.22080 CrossRef Google Scholar PubMed
- Démonet, J.F., Puel, M., Celsis, P., & Cardebat, D. (1991). “Subcortical” aphasia: Some proposed pathophysiological mechanisms and their rCBF correlates revealed by SPECT. Journal of Neurolinguistics, 6(3), 319–344. https://doi.org/10.1016/0911-6044(91)90025-E CrossRef Google Scholar
- Dick, A.S., Bernal, B., & Tremblay, P. (2014). The language connectome: New pathways, new concepts. The Neuroscientist, 20(5), 453–467. https://doi.org/10.1177/1073858413513502 CrossRef Google Scholar PubMed
- Dick, F., Bates, E., Wulfeck, B., Utman, J., Dronkers, N.F., & Gernsbacher, M. (2001). Language deficits, localization and grammar: Evidence for a distributive model of language breakdown in aphasics and normals. Psychological Review, 108(4), 759–788. CrossRef Google Scholar
- Dronkers, N.F. (1996). A new brain region for coordinating speech articulation. Nature, 384, 159–161. CrossRef Google Scholar PubMed
- Dronkers, N.F., & Baldo, J.V. (2010). Language: Aphasia. In Encyclopedia of Neuroscience (pp. 343–348). https://doi.org/10.1016/B978-008045046-9.01876-3 Google Scholar
- Dronkers, N.F., & Ludy, C.A. (1998). Brain lesion analysis in clinical research. In B. Stemmer & H.A. Whitaker (Eds.), Handbook of neurolinguistics (pp. 173–187). San Diego, CA: Academic Press. CrossRef Google Scholar
- Dronkers, N.F., Plaisant, O., Iba-Zizen, M.T., & Cabanis, E.A. (2007). Paul Broca’s historic cases: High resolution MR imaging of the brains of Leborgne and Lelong. Brain, 130(Pt 5), 1432–1441. https://doi.org/10.1093/brain/awm042 CrossRef Google Scholar PubMed
- Dronkers, N.F., Redfern, B.B., & Knight, R.T. (2000). The neural architecture of language disorders. In M.S. Gazzaniga (Ed.), The new cognitive neurosciences (pp. 949–958). Cambridge: The MIT Press. Google Scholar
- Dronkers, N.F., Redfern, B.B., & Ludy, C.A. (1995). Lesion localization in chronic Wernicke’s aphasia. Brain and Language, 51(1), 62–65. Google Scholar
- Dronkers, N.F., Wilkins, D.P., Van Valin, R.D., Redfern, B.B., & Jaeger, J.J. (2004). Lesion analysis of the brain areas involved in language comprehension. Cognition, 92(1–2), 145–177. https://doi.org/10.1016/j.cognition.2003.11.002. CrossRef Google Scholar PubMed
- Duffau, H. (2014). The huge plastic potential of adult brain and the role of connectomics: New insights provided by serial mappings in glioma surgery. Cortex, 58, 325–337. https://doi.org/10.1016/j.cortex.2013.08.005 CrossRef Google Scholar PubMed
- Flinker, A., Korzeniewska, A., Shestyuk, A.Y., Franaszczuk, P.J., Dronkers, N.F., Knight, R.T., & Crone, N.E. (2015). Redefining the role of Broca’s area in speech. Proceedings of the National Academy of Sciences of the United States of America, 112(9), 2871–2875. https://doi.org/10.1073/pnas.1414491112 CrossRef Google Scholar
- Freud, S. (1891). On aphasia (E. (Translation) Stengel Ed.). New York: International University Press. Google Scholar
- Fridriksson, J., Richardson, J.D., Fillmore, P., & Cai, B. (2012). Left hemisphere plasticity and aphasia recovery. NeuroImage, 60(2), 854–863. https://doi.org/10.1016/j.neuroimage.2011.12.057 CrossRef Google Scholar PubMed
- Friederici, A.D., & Singer, W. (2015). Grounding language processing on basic neurophysiological principles. Trends in Cognitive Sciences, 19, 329–338. https://doi.org/10.1016/j.tics.2015.03.012 CrossRef Google Scholar PubMed
- Gainotti, G., Silveri, M.C., Daniel, A., & Giustolisi, L. (1995). Neuroanatomical correlates of category-specific semantic disorders: A critical survey. Memory, 3(3–4), 247–263. https://doi.org/10.1080/09658219508253153 CrossRef Google Scholar PubMed
- Geranmayeh, F., Brownsett, S.L.E., & Wise, R.J.S. (2014). Task-induced brain activity in aphasic stroke patients: What is driving recovery? Brain, 137(Pt 10), 2632–2648. https://doi.org/10.1093/brain/awu163 CrossRef Google Scholar PubMed
- Geschwind, N. (1965). Disconnexion syndromes in animals and man. I. Brain, 88, 237–294. CrossRef Google Scholar PubMed
- Goldstein, K. (1948). Language and language disturbances: Aphasic symptom complexes and their significance for medicine and theory of language. New York: Grune & Stratton. Google Scholar
- Goodglass, H., & Kaplan, E. (1972). The assessment of aphasia and related disorders. Philadelphia: Lea & Febiger. Google Scholar
- Gorno-Tempini, M.L., Dronkers, N.F., Rankin, K.P., Ogar, J.M., Phengrasamy, L., Rosen, H.J., & Miller, B.L. (2004). Cognition and anatomy in three variants of primary progressive aphasia. Annals of Neurology, 55(3), 335–346. https://doi.org/10.1002/ana.10825 CrossRef Google Scholar PubMed
- Grossman, M., Powers, J., Ash, S., McMillan, C., Burkholder, L., Irwin, D., & Trojanowski, J.Q. (2013). Disruption of large-scale neural networks in non-fluent/agrammatic variant primary progressive aphasia associated with frontotemporal degeneration pathology. Brain and Language, 127(2), 106–120. https://doi.org/10.1016/j.bandl.2012.10.005 CrossRef Google Scholar PubMed
- Hagoort, P., & Indefrey, P. (2014). The neurobiology of language beyond single words. Annual Review of Neuroscience, 37, 347–362. https://doi.org/10.1146/annurev-neuro-071013-013847 CrossRef Google Scholar PubMed
- Hamilton, R.H., Chrysikou, E.G., & Coslett, B. (2011). Mechanisms of aphasia recovery after stroke and the role of noninvasive brain stimulation. Brain and Language, 118(1–2), 40–50. https://doi.org/10.1016/j.bandl.2011.02.005 CrossRef Google Scholar PubMed
- Head, H. (1926). No Title. In Aphasia and kindred disorders of speech. New York: Macmillan. Google Scholar
- Heiss, W.-D., Kessler, J., Thiel, A., Ghaemi, M., & Karbe, H. (1999). Differential capacity of left and right hemispheric areas for compensation of poststroke aphasia. Annals of Neurology, 45(4), 430–438. https://doi.org/10.1002/1531-8249(199904)45:4<430::AID-ANA3>3.0.CO;2-P3.0.CO;2-P>CrossRef Google Scholar PubMed
- Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews. Neuroscience, 8(5), 393–402. https://doi.org/10.1038/nrn2113 CrossRef Google Scholar PubMed
- Hodges, J.R., Patterson, K., Oxbury, S., & Funnell, E. (1992). Semantic dementia. Brain, 115, 1783–1806. https://doi.org/10.1093/brain/115.6.1783 CrossRef Google Scholar PubMed
- Howard, D., Swinburn, K., & Porter, G. (2010). Putting the CAT out: What the comprehensive aphasia test has to offer. Aphasiology, 24(1), 56–74. https://doi.org/10.1080/02687030802453202 CrossRef Google Scholar
- Inoue, K., Madhyastha, T., Rudrauf, D., Mehta, S., & Grabowski, T. (2014). What affects detectability of lesion-deficit relationships in lesion studies? NeuroImage: Clinical, 6, 388–397. https://doi.org/10.1016/j.nicl.2014.10.002 CrossRef Google Scholar PubMed
- Ivanova, M.V., Isaev, D.Y., Dragoy, O.V., Akinina, Y.S., Petrushevskiy, A.G., Fedina, O.N., & Dronkers, N.F. (2016). Diffusion-tensor imaging of major white matter tracts and their role in language processing in aphasia. Cortex, 85, 165–181. https://doi.org/10.1016/j.cortex.2016.04.019. CrossRef Google Scholar PubMed
- Ivanova, M.V., Dragoy, O.V., Kuptsova, S.V., Ulicheva, A.S., & Laurinavichyute, A.K. (2015). The contribution of working memory to language comprehension: Differential effect of aphasia type. Aphasiology, 29, 645–664. https://doi.org/10.1080/02687038.2014.975182 CrossRef Google Scholar
- Jackson, J.H. (1878). On affectations of speech from diseases of the brain. I. Brain, 1, 304–330. CrossRef Google Scholar
- Jackson, J.H. (1879). On affectations of speech from diseases of the brain. II. Brain, 2, 323–356. CrossRef Google Scholar
- Jarso, S., Li, M., Faria, A., Davis, C., Leigh, R., Sebastian, R., & Hillis, A.E. (2013). Distinct mechanisms and timing of language recovery after stroke. Cognitive Neuropsychology, 30(7–8), 454–475. https://doi.org/10.1080/02643294.2013.875467 CrossRef Google Scholar PubMed
- Kalladka, D., Sinden, J., Pollock, K., Haig, C., McLean, J., Smith, W., & Muir, K.W. (2016). Human neural stem cells in patients with chronic ischaemic stroke (PISCES): A phase 1, first-in-man study. The Lancet, 388(10046), 787–796. https://doi.org/10.1016/S0140-6736(16)30513-X CrossRef Google Scholar
- Kaplan, E., Goodglass, H., & Weintraub, S. (1983). Boston Naming Test. Philadelphia: Lea and Febiger. Google Scholar
- Kay, J., Lesser, R. & Coltheart, M. (1992). Psycholinguistic assessments of language processing in aphasia (PALPA). Lawrence Erlbaum. Google Scholar
- Kay, J., Lesser, R., & Coltheart, M. (1996). Psycholinguistic assessments of language processing in aphasia (PALPA): An introduction. Aphasiology, 10(2), 159–180. https://doi.org/10.1080/02687039608248403 CrossRef Google Scholar
- Kertesz, A. (1982). Western aphasia battery. New York: Grune and Stratton. Google Scholar
- Kertesz, A., Harlock, W., & Coates, R. (1979). Computer tomographic localization, lesion size, and prognosis in aphasia and nonverbal impairment. Brain and Language, 8, 34–50. CrossRef Google Scholar PubMed
- Kümmerer, D., Hartwigsen, G., Kellmeyer, P., Glauche, V., Mader, I., Klöppel, S., & Saur, D. (2013). Damage to ventral and dorsal language pathways in acute aphasia. Brain, 136(Pt 2), 619–629. https://doi.org/10.1093/brain/aws354 CrossRef Google Scholar PubMed
- Kutas, M., & Hillyard, S.A. (1980). Reading senseless sentences: Brain potentials reflect semantic incongruity. Science, 11, 203–205. https://doi.org/10.1126/science.7350657 CrossRef Google Scholar
- Lambon Ralph, M.A., Ehsan, S., Baker, G.A., & Rogers, T.T. (2012). Semantic memory is impaired in patients with unilateral anterior temporal lobe resection for temporal lobe epilepsy. Brain, 135(Pt 1), 242–258. https://doi.org/10.1093/brain/awr325 CrossRef Google Scholar PubMed
- Lashley, K. (1950). In search of the engram. Society of Experimental Biology Symposium, 4, 454–482. Google Scholar
- Lichtheim, L. (1885). On aphasia. Brain, 7, 433–484. CrossRef Google Scholar
- Lorch, M. (2013). Written language production disorders: Historical and recent perspectives. Current Neurology and Neuroscience Reports, 13, 369. https://doi.org/10.1007/s11910-013-0369-9 CrossRef Google Scholar PubMed
- Luria, A.R. (1947). Traumatic aphasia. The Hague: Reprinted in translation, Mouton, 1970. Google Scholar
- Luria, A.R. (1966). Higher cortical functions in man. New York: Basic Books. Google Scholar
- MacKay, D.G., Stewart, R., & Burke, D.M. (1998). H.M. Revisited: Relations between language comprehension, memory, and the hippocampal system. Journal of Cognitive Neuroscience, 10(3), 377–394. https://doi.org/10.1162/089892998562807 CrossRef Google Scholar PubMed
- Mah, Y.H., Husain, M., Rees, G., & Nachev, P. (2014). Human brain lesion-deficit inference remapped. Brain, 137(9), 2522–2531. https://doi.org/10.1093/brain/awu164 CrossRef Google Scholar PubMed
- Marangolo, P., Fiori, V., Calpagnano, M.A., Campana, S., Razzano, C., Caltagirone, C., & Marini, A. (2013). tDCS over the left inferior frontal cortex improves speech production in aphasia. Frontiers in Human Neuroscience, 7, 539. https://doi.org/10.3389/fnhum.2013.00539 CrossRef Google Scholar PubMed
- Mariën, P., Ackermann, H., Adamaszek, M., Barwood, C.H.S., Beaton, A., Desmond, J., & Ziegler, W. (2014). Consensus paper: Language and the cerebellum: An ongoing enigma. Cerebellum, 13(3), 386–410. https://doi.org/10.1007/s12311-013-0540-5 Google Scholar
- Mechelli, A., Price, C.J., Friston, K.J., & Ashburner, J. (2005). Voxel-based morphometry applications of the human brain: Methods and applications. Current Medical Imaging Reviews, 1, 1–9. https://doi.org/10.2174/1573405054038726 CrossRef Google Scholar
- Mesgarani, N., Cheung, C., Johnson, K., & Chang, E.F. (2014). Phonetic feature encoding in human superior temporal gyrus. Science, 343(6174), 1006–1010. https://doi.org/10.1126/science.1245994 CrossRef Google Scholar PubMed
- Mesulam, M.-M. (2001). Primary progressive aphasia. Annals of Neurology, 49(4), 425–432. https://doi.org/10.1002/ana.91 CrossRef Google Scholar PubMed
- Metter, E.J., Jackson, C., Kempler, D., Riege, W.H., Hanson, W.R., Mazziotta, J.C., & Phelps, M.E. (1986). Left hemisphere intracerebral hemorrhages studied by (F-18)- fluorodeoxyglucose PET. Neurology, 36(9), 1155–1162. CrossRef Google Scholar PubMed
- Mirman, D., Chen, Q., Zhang, Y., Wang, Z., Faseyitan, O.K., Coslett, H.B., & Schwartz, M.F. (2015). Neural organization of spoken language revealed by lesion–symptom mapping. Nature Communications, 6, 6762. https://doi.org/10.1038/ncomms7762 CrossRef Google Scholar PubMed
- Mohr, J.P. (1976). Broca’s area and Broca’s aphasia. In H. Whitaker (Ed.), Studies in neurolinguistics, Volume 1, (pp. 201–233). New York: Academic Press. Google Scholar
- Muller, A.M., & Meyer, M. (2014). Language in the brain at rest: New insights from resting state data and graph theoretical analysis. Frontiers in Human Neuroscience, 8, 228. https://doi.org/10.3389/fnhum.2014.00228 CrossRef Google Scholar
- Mummery, C.J., Shallice, T., & Price, C.J. (1999). Dual-process model in semantic priming: A functional imaging perspective. NeuroImage, 9, 516–525. CrossRef Google Scholar PubMed
- Nadeau, S.E., & Crosson, B. (1997). Subcortical aphasia. Brain and Cognition, 58, 355–402. https://doi.org/10.1006/brln.1997.1707 Google Scholar PubMed
- Naeser, M.A., & Hayward, R.W. (1978). Naeser 1978 - Lesion localization in aphasia with cranial computed tomography and the Boston Diagnostic Aphasia Exam. Neurology, 28, 545–551. CrossRef Google Scholar PubMed
- Naeser, M.A., Martin, P.I., Nicholas, M., Baker, E.H., Seekins, H., Kobayashi, M., & Pascual-Leone, A. (2005). Improved picture naming in chronic aphasia after TMS to part of right Broca’s area: An open-protocol study. Brain and Language, 93(1), 95–105. https://doi.org/10.1016/j.bandl.2004.08.004 CrossRef Google Scholar PubMed
- Nair, V.A., Young, B.M., La, C., Reiter, P., Nadkarni, T.N., Song, J., & Prabhakaran, V. (2015). Functional connectivity changes in the language network during stroke recovery. Annals of Clinical and Translational Neurology, 2(2), 185–195. https://doi.org/10.1002/acn3.165 CrossRef Google Scholar PubMed
- Ojemann, G., Ojemann, J., Lettich, E., & Berger, M. (1989). Cortical language localization in left, dominant hemisphere. Journal of Neurosurgery, 71(3), 316–326. https://doi.org/10.3171/jns.1989.71.3.0316 CrossRef Google Scholar PubMed
- Paradis, M. (2004). A neurolinguistic theory of bilingualism. Amsterdam/Philadelphia: John Benjamins. CrossRef Google Scholar
- Penfield, W., & Roberts, L. (1959). Speech and brain mechanisms. Princeton, NJ: Princeton University Press. Google Scholar PubMed
- Perani, D., Cappa, S.F., Tettamanti, M., Rosa, M., Scifo, P., Miozzo, A., & Fazio, F. (2003). A fMRI study of word retrieval in aphasia. Brain and Language, 85(3), 357–368. CrossRef Google Scholar PubMed
- Piai, V., Anderson, K.L., Lin, J.J., Dewar, C., Parvizi, J., Dronkers, N.F., & Knight, R.T. (2016). Direct brain recordings reveal hippocampal rhythm underpinnings of language processing. Proceedings of the National Academy of Sciences of the United States of America, 4, 11366–11371. https://doi.org/10.1073/pnas.1603312113 CrossRef Google Scholar
- Poizner, H., Klima, E., & Bellugi, U. (1990). What the hands reveal about the brain. Cambridge, MA: The MIT Press. Retrieved from https://mitpress.mit.edu/authors/howard-poizner Google Scholar
- Porch, B.E. (1967). Porch index of communicative ability. Palo Alto, CA: Consulting Psychologists Press. Google Scholar PubMed
- Price, C.J. (2000). The anatomy of language: Contributions from functional imaging. Journal of Anatomy, 197, 335–359. CrossRef Google Scholar
- Raichle, M.E., MacLeod, A.M., Snyder, A.Z., Powers, W.J., Gusnard, D.A., & Shulman, G.L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 676–682. https://doi.org/10.1073/pnas.98.2.676 CrossRef Google Scholar
- Riès, S.K., Karzmark, C.R., Navarrete, E., Knight, R.T., & Dronkers, N.F. (2015). Specifying the role of the left prefrontal cortex in word selection. Brain and Language, 149, 135–147. https://doi.org/10.1016/j.bandl.2015.07.007 CrossRef Google Scholar PubMed
- Rorden, C., & Karnath, H. (2004). Using human brain lesions to infer function: A relic from a past era in the fMRI age? Nature Reviews. Neuroscience, 5(10), 813–819. https://doi.org/10.1038/nrn1521 CrossRef Google Scholar PubMed
- Rosen, H.J., Petersen, S.E., Linenweber, M.R., Snyder, A.Z., White, D.A., Chapman, L., & Corbetta, M.D. (2000). Neural correlates of recovery from aphasia after damage to left inferior frontal cortex. Neurology, 55(12), 1883–1894. CrossRef Google Scholar PubMed
- Sanai, N., Mirzadeh, Z., & Berger, M.S. (2008). Functional outcome after language mapping for glioma resection. New England Journal of Medicine, 358(1), 18–27. https://doi.org/10.1056/NEJMoa067819 CrossRef Google Scholar PubMed
- Saur, D., Kreher, W., Schnell, S., Ku, D., Vry, M., Umarova, R., & Rijntjes, M. (2008). Ventral and dorsal pathways for language. Proceedings of the National Academy of Sciences of the United States of America, 105(46), 18035–18040. https://doi.org/http://doi.org/10.1073/pnas.0805234105 CrossRef Google Scholar PubMed
- Saur, D., Lange, R., Baumgaertner, A., Schraknepper, V., Willmes, K., Rijntjes, M., & Weiller, C. (2006). Dynamics of language reorganization after stroke. Brain, 129(6), 1371–1384. https://doi.org/10.1093/brain/awl090 CrossRef Google Scholar PubMed
- Schlaug, G., Marchina, S., & Norton, A. (2009). Evidence for plasticity in white-matter tracts of patients with chronic Broca’s aphasia undergoing intense intonation-based speech therapy. Annals of the New York Academy of Sciences, 1169, 385–394. https://doi.org/10.1111/j.1749-6632.2009.04587.x CrossRef Google Scholar PubMed
- Schlaug, G., Marchina, S., & Wan, C.Y. (2011). The use of non-invasive brain stimulation techniques to facilitate recovery from post-stroke aphasia. Neuropsychology Review, 21(3), 288–301. https://doi.org/10.1007/s11065-011-9181-y CrossRef Google Scholar
- Schuell, H. (1965). Differential diagnosis of aphasia with the Minnesota Test. Minneapolis: University of Minnesota Press. Google Scholar PubMed
- Schwartz, M.F., Faseyitan, O., Kim, J., & Coslett, H.B. (2012). The dorsal stream contribution to phonological retrieval in object naming. Brain, 135(12), 3799–3814. https://doi.org/10.1093/brain/aws300 CrossRef Google Scholar PubMed
- Semenza, C. (2009). The neuropsychology of proper names. Mind and Language, 24(4), 347–369. https://doi.org/10.1111/j.1468-0017.2009.01366.x CrossRef Google Scholar
- Smith, S.M., Vidaurre, D., Beckmann, C.F., Glasser, M.F., Jenkinson, M., Miller, K.L., & Van Essen, D.C. (2013). Functional connectomics from resting-state fMRI. Trends in Cognitive Sciences, 17(12), 666–682. https://doi.org/10.1016/j.tics.2013.09.016 CrossRef Google Scholar PubMed
- Snowden, J., Goulding, P., & Neary, D. (1989). Semantic dementia: A form of circumscribed cerebral atrophy. Behavioural Neurology, 2(3), 167–182. https://doi.org/MCI-Converted #101; Thesis_references-Converted #324 Google Scholar
- Steinberg, G.K., Kondziolka, D., Wechsler, L.R., Lunsford, L.D., Coburn, M.L., Billigen, J.B., & Schwartz, N.E. (2016). Clinical outcomes of transplanted modified bone marrow–derived mesenchymal stem cells in stroke. Stroke, 47(7), 1817–1824. https://doi.org/10.1161/STROKEAHA.116.012995 CrossRef Google Scholar PubMed
- Sung, J.E., McNeil, M.R., Pratt, S.R., Dickey, M.W., Hula, W.D., Szuminsky, N.J., & Doyle, P.J. (2009). Verbal working memory and its relationship to sentence-level reading and listening comprehension in persons with aphasia. Aphasiology, 23(7–8), 1040–1052. https://doi.org/10.1080/02687030802592884 CrossRef Google Scholar
- Thompson, C.K., & den Ouden, D.B. (2008). Neuroimaging and recovery of language in aphasia. Current Neurology and Neuroscience Reports, 8(6), 475–483. https://doi.org/10.1007/s11910-008-0076-0 CrossRef Google Scholar PubMed
- Tomasi, D., & Volkow, N.D. (2012). Resting functional connectivity of language networks: Characterization and reproducibility. Molecular Psychiatry, 17(8), 841–854. https://doi.org/10.1038/mp.2011.177 CrossRef Google Scholar PubMed
- Tournier, J., Mori, S., & Leemans, a. (2011). Diffusion tensor imaging and beyond. Magnetic Resonance in Medicine, 65(6), 1532–1556. https://doi.org/10.1002/mrm.22924.Diffusion CrossRef Google Scholar
- Turken, A.U., & Dronkers, N.F. (2011). The neural architecture of the language comprehension network: Converging evidence from lesion and connectivity analyses. Frontiers in Systems Neuroscience, 5, 1. https://doi.org/10.3389/fnsys.2011.00001 CrossRef Google Scholar PubMed
- Tyler, L.K., Marslen-Wilson, W.D., Randall, B., Wright, P., Devereux, B.J., Zhuang, J., & Stamatakis, E.A. (2011). Left inferior frontal cortex and syntax: Function, structure and behaviour in patients with left hemisphere damage. Brain, 134(Pt 2), 415–431. https://doi.org/10.1093/brain/awq369 CrossRef Google Scholar PubMed
- van Hees, S., Mcmahon, K., Angwin, A., de Zubicaray, G., Read, S., & Copland, D.A. (2014a). A functional MRI study of the relationship between naming treatment outcomes and resting state functional connectivity in post-stroke aphasia. Human Brain Mapping, 35(8), 3919–3931. https://doi.org/10.1002/hbm.22448 CrossRef Google Scholar PubMed
- van Hees, S., McMahon, K., Angwin, A., de Zubicaray, G., Read, S., & Copland, D.A. (2014b). Changes in white matter connectivity following therapy for anomia post stroke. Neurorehabilitation and Neural Repair, 28(4), 325–334. https://doi.org/10.1177/1545968313508654 CrossRef Google Scholar PubMed
- Vigneau, M., Beaucousin, V., Hervé, P.-Y., Jobard, G., Petit, L., Crivello, F., & Tzourio-Mazoyer, N. (2011). What is right-hemisphere contribution to phonological, lexico-semantic, and sentence processing? NeuroImage, 54(1), 577–593. https://doi.org/10.1016/j.neuroimage.2010.07.036 CrossRef Google Scholar PubMed
- Warrington, E.K. (1975). The selective impairment of semantic memory. The Quarterly Journal of Experimental Psychology, 27, 635–657. https://doi.org/10.1080/14640747508400525 CrossRef Google Scholar PubMed
- Warrington, E.K. & Shallice, T. (1984). Category specific semantic impairments. Brain, 107, 829–854. CrossRef Google Scholar PubMed
- Weiller, C., Isensee, C., Rijntjes, M., Huber, W., Müller, S., Bier, D., & Diener, H.C. (1995). Recovery from wernicke’s aphasia: A positron emission tomographic study. Annals of Neurology, 37(6), 723–732. https://doi.org/10.1002/ana.410370605 CrossRef Google Scholar PubMed
- Wernicke, C. (1874). Der aphasische Symptomencomplex. Breslau: Kohn and Weigert. Google Scholar
- Wilson, S.M., Galantucci, S., Tartaglia, M.C., Rising, K., Patterson, D.K., Henry, M.L., & Gorno-Tempini, M.L. (2011). Syntactic processing depends on dorsal language tracts. Neuron, 72(2), 397–403. https://doi.org/10.1016/j.neuron.2011.09.014 CrossRef Google Scholar PubMed
- Wilson, S.M., Lam, D., Babiak, M.C., Perry, D.W., Shih, T., Hess, C.P., & Chang, E.F. (2015). Transient aphasias after left hemisphere resective surgery. Journal of Neurosurgery, 862, 1–13. https://doi.org/10.3171/2015.4.JNS141962 Google Scholar
- Yang, M., Li, J., Li, Y., Li, R., Pang, Y., Yao, D., & Chen, H. (2016). Altered intrinsic regional activity and interregional functional connectivity in post-stroke aphasia. Scientific Reports, 6, 24803. https://doi.org/10.1038/srep24803 CrossRef Google Scholar PubMed
- Zhu, D., Chang, J., Freeman, S., Tan, Z., Xiao, J., Gao, Y., & Kong, J. (2014). Changes of functional connectivity in the left frontoparietal network following aphasic stroke. Frontiers in Behavioral Neuroscience, 8, 167. https://doi.org/10.3389/fnbeh.2014.00167 CrossRef Google Scholar PubMed
- Zurif, E.B., Caramazza, A., & Meyerson, R. (1972). Grammatical judgements of agrammatic aphasics. Neuropsychologia, 10, 405–417. CrossRef Google Scholar PubMed
Our knowledge of the functions of the prefrontal cortex, often called executive, supervisory, or control, has been transformed over the past 50 years. After operationallydefining terms for clarification, we review the impact of advances in functional, structural, and theoretical levels of understanding upon neuropsychological assessmentpractice as a means of identifying 11 principles/challenges relating to assessment of executive function. Three of these were already known 50 years ago, and 8 havebeen confirmed or emerged since. Key themes over this period have been the emergence of the use of naturalistic tests to address issues of “ecological validity”; discoveryof the complexity of the frontal lobe control system; invention of new tests for clinical use; development of key theoretical frameworks that address the issue ofthe role of prefrontal cortex systems in the organization of human cognition; the move toward considering brain systems rather than brain regions; the advent of functionalneuroimaging, and its emerging integration into clinical practice. Despite these huge advances, however, practicing neuropsychologists are still desperately in needof new ways of measuring executive function. We discuss pathways by which this might happen, including decoupling the two levels of explanation (information processing;brain structure) and integrating very recent technological advances into the neuropsychologist’s toolbox. (JINS, 2017, 23,755–767)
- Alexander, G.E., DeLong, M.R., & Strick, P.I. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357–381. CrossRef Google Scholar PubMed
- Alexander, M.P., Stuss, D.T., Picton, T., Shallice, T., & Gillingham, S. (2007). Regional frontal injuries cause distinct impairments in cognitive control. Neurology, 68, 1515–1523. CrossRef Google Scholar PubMed
- Alexander, M.P., Stuss, D.T., & Fansabedian, N. (2003). California verbal learning test: Performance by patients with focal frontal and non-frontal lesions. Brain, 126, 1493–1503. CrossRef Google Scholar PubMed
- Alexander, M.P., Stuss, D.T., Shallice, T., Picton, T.W., & Gillingham, S. (2005). Impaired concentration due to frontal lobe damage from two distinct lesion sites. Neurology, 65, 572–579. CrossRef Google Scholar PubMed
- Anderson, C.V., Bigler, E.D., & Blatter, D.D. (1995). Frontal lobe lesions, diffuse damage, and neuropsychological functioning in traumatic brain-injured patients. Journal of Clinical and Experimental Neuropsychology, 17(6), 900–908. CrossRef Google Scholar PubMed
- Baddeley, A.D. (1986). Working memory. Oxford: Clarendon Press. Google Scholar PubMed
- Baddeley, A., Della Sala, S., Papagno, C., & Spinnler, H. (1997). Dual-task performance in dysexecutive and nondysexecutive patients with a frontal lesion. Neuropsychology, 11, 187–194. CrossRef Google Scholar PubMed
- Badre, D. (2008). Cognitive control, hierarchy, and the rostro-caudal organization of the frontal lobes. Trends in Cognitive Sciences, 12, 193–200. doi: 10.1016/j.tics.2008.02.004 CrossRef Google Scholar PubMed
- Bechara, A., Damasio, H., Tranel, D., & Damasio, A.R. (2005). The Iowa Gambling Task and the somatic marker hypothesis: Some questions and answers. Trends in Cognitive Sciences, 9, 159–162. CrossRef Google Scholar PubMed
- Benoit, R.G., Gilbert, S.J., Volle, E., & Burgess, P.W. (2010). When I think about me and simulate you: Medial rostral prefrontal cortex and self-referential processes. NeuroImage, 50, 1340–1349. CrossRef Google Scholar PubMed
- Benton, A.L. (1991). The prefrontal region: Its early history. In H.S. Levin, H.M. Eisenberg & A.L. Benton (Eds.), Frontal lobe function and dysfunction (pp 3–34). New York: Oxford University Press. Google Scholar
- Burgess, P.W. (1997). Theory and methodology in executive function research. In P. Rabbitt (Ed.), Methodology of frontal and executive function (pp 81–116). Hove, UK: Psychology Press. Google Scholar PubMed
- Burgess, P.W., Alderman, N., Evans, J., Emslie, H., & Wilson, B.A. (1998). The ecological validity of tests of executive function. Journal of the International Neuropsychological Society, 4, 547–558. CrossRef Google Scholar PubMed
- Burgess, P.W., Alderman, N., Volle, E., Benoit, R.G., & Gilbert, S.J. (2009). Mesulam’s frontal lobe mystery re-examined. Restorative Neurology and Neuroscience, 27, 493–506. Google Scholar PubMed
- Burgess, P.W., Alderman, N., Forbes, C., Costello, A., Coates, L., Dawson, D.R., & Channon, S. (2006). The case for the development and use of “ecologically valid” measures of executive function in experimental and clinical neuropsychology. Journal of the International Neuropsychological Society, 12, 1–16. CrossRef Google Scholar PubMed
- Burgess, P.W., Dumontheil, I., & Gilbert, S.J. (2007). The gateway hypothesis of rostral prefrontal cortex (area 10) function. Trends in Cognitive Sciences, 11, 290–298. CrossRef Google Scholar PubMed
- Burgess, P.W., Gonen-Yaacovi, G., & Volle, E. (2011). Functional neuroimaging studies of prospective memory: What have we learnt so far? Neuropsychologia, 49, 2246–2257. CrossRef Google Scholar PubMed
- Burgess, P.W., Gonen-Yaacovi, G., & Volle, E. (2012). Rostral prefrontal cortex: What neuroimaging can learn from human neuropsychology. In B. Levine & F.I.M. Craik (Eds.), Mind and the frontal lobes: Cognition, behavior, and brain imaging (pp. 47–92). New York: Oxford University Press. Google Scholar
- Burgess, P.W., & Shallice, T. (1996a). Bizarre responses, rule detection and frontal lobe lesions. Cortex, 32, 241–259. CrossRef Google Scholar PubMed
- Burgess, P.W., & Shallice, T. (1996b). Response suppression, initiation and strategy use following frontal lobe lesions. Neuropsychologia, 34, 263–273. CrossRef Google Scholar PubMed
- Burgess, P.W., & Shallice, T. (1997). The Hayling and Brixton tests. Bury St. Edmunds, UK: Thames Valley Test Company. Google Scholar
- Burgess, P.W., Veitch, E., Costello, A., and Shallice, T. (2000). The cognitive and neuroanatomical correlates of multitasking. Neuropsychologia, 38, 848–863. CrossRef Google Scholar PubMed
- Burgess, P.W., & Wu, H.-C. (2013). Rostral prefrontal cortex (Brodmann Area 10): Metacognition in the brain. In D.T. Stuss & R.T. Knight (Eds.), Principles of frontal lobe function (2nd ed., pp. 524–544). New York: Oxford University Press. Google Scholar
- Catani, C., Dell’Acqua, F., Bizzi, A., Forkel, S.J., Williams, S.C., Simmons, A., Murphy, D.G., & Thiebaut de Schotten, M. (2012). Beyond cortical localization in clinico-anatomical correlation. Cortex, 48, 1262–1287. CrossRef Google Scholar PubMed
- Channon, S. (2004). Frontal lobe dysfunction and everyday problem-solving: Social and non-social contributions. Acta Psychologica, 115(2-3), 235–254. CrossRef Google Scholar PubMed
- Christensen, A.-L. (1975). Luria’s neuropsychological investigation. New York: Spectrum Publications. Google Scholar
- Cicerone, K., Levin, H., Malec, J., Stuss, D., & Whyte, J. (2006). Cognitive rehabilitation interventions for executive function: Moving from bench to bedside in patients with traumatic brain injury. Journal of Cognitive Neuroscience, 18, 1212–1222. CrossRef Google Scholar PubMed
- Clark, l, Cools, R., & Robbins, T.W. (2004). The neuropsychology of ventral prefrontal cortex: Decision-making and reversal learning. Brain and Cognition, 55, 41–53. CrossRef Google Scholar PubMed
- Craik, F.I.M., Moroz, T.M., Moscovitch, M., Stuss, D.T., Winocur, G., Tulving, E., & Kapur, S. (1999). In search of the self: A positron emission tomography study. Psychological Science, 10, 26–34. CrossRef Google Scholar
- Cummings, J.L. (1995). Anatomic and behavioral aspects of frontal-subcortical circuits. In J. Grafman, K.J. Holyoak & F. Boller (Eds.), Structure and functions of the human prefrontal cortex, Vol. 769, pp. 1–13). New York: New York Academy of Sciences. Google Scholar
- Damasio, A.R. (1996). The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 351, 1413–1420. CrossRef Google Scholar PubMed
- Dawson, D.R., Anderson, N.D., Burgess, P.W., Cooper, E., Krpan, K.M., & Stuss, D.T. (2009). Further development of the multiple errands test: Standardized scoring, reliability, and ecological validity for the Baycrest version. Archives of Physical Medicine and Rehabilitation, 90(S1), 41–51. CrossRef Google Scholar PubMed
- Demakis, G.J. (2004). Frontal lobe damage and tests of executive processing: A meta-analysis of the category test, Stroop test, and trail-making test. Journal of Clinical and Experimental Neuropsychology, 26, 441–450. CrossRef Google Scholar PubMed
- D’Esposito, M., & Badre, D. (2012). Combining the insights derived from lesion and fMRI studies to understand the function of prefrontal cortex. In B. Levine & F.I.M. Craik (Eds.), Mind and the frontal lobes. Cognition, behavior, and brain imaging (pp. 93–108). Oxford/New York: Oxford University Press. Google Scholar
- Dubois, B., Slachevsky, A., Litvan, I., & Pillon, B. (2000). The FAB: A frontal assessment battery at bedside. Neurology, 55, 1621–1626. CrossRef Google Scholar PubMed
- Duncan, J., & Miller, E.K. (2013). Adaptive neural coding in frontal and parietal cortex. In D.T. Stuss & R.T. Knight (Eds.), Principles of frontal lobe function (2nd ed., pp. 292–301). New York: Oxford University Press. Google Scholar
- Duncan, J., & Owen, A.M. (2000). Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends in Neurosciences, 23, 475–483. CrossRef Google Scholar PubMed
- Duncan, J., Parr, A., Woolgar, A., Thompson, R., Bright, P., Cox, S., & Nimmo-Smith, I. (2008). Goal neglect and Spearman’s g: Competing parts of a complex task. Journal of Experimental Psychology: General, 137, 131–148. CrossRef Google Scholar
- Eslinger, P.J., & Damasio, A.R. (1985). Severe disturbance of higher cognition after bilateral frontal lobe ablation. Neurology, 35(12), 1731–1741. CrossRef Google Scholar PubMed
- Fellows, L.K., & Farah, M.J. (2005). Different underlying impairments in decision-making following ventromedial and dorsolateral frontal lobe damage in humans. Cerebral Cortex, 15, 58–63. CrossRef Google Scholar PubMed
- Floden, D., Alexander, M.P., Kubu, C., Katz, D., & Stuss, D.T. (2008). Impulsivity and risk-taking behavior in focal frontal lobe lesions. Neuropsychologia, 46, 213–223. CrossRef Google Scholar PubMed
- Floden, D., Vallesi, A., & Stuss, D.T. (2011). Task context and frontal lobe activation in the Stroop task. Journal of Cognitive Neuroscience, 23, 867–879. CrossRef Google Scholar PubMed
- Gilbert, S.J., Spengler, S., Simons, J.S.S., Steele, J.D., Lawrie, S.M., Frith, C.D., & Burgess, P.W. (2006). Functional specialisation within rostral prefrontal cortex (area 10): A meta-analysis. Journal of Cognitive Neuroscience, 18(6), 932–948. CrossRef Google Scholar PubMed
- Gilbert, S.J., Gollwitzer, P.M., Cohen, A.L., Oettingen, G., & Burgess, P.W. (2009). Separable brain systems supporting cued versus self-initiated realization of delayed intentions. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 905–915. Google Scholar PubMed
- Gilbert, S.J., Gonen-Yaacovi, G., Benoit, R.G., Volle, E., & Burgess, P.W. (2010). Distinct functional connectivity associated with lateral versus medial rostral prefrontal cortex: A meta-analysis. NeuroImage, 53, 1359–1367. CrossRef Google Scholar PubMed
- Gioia, G.A., Isquith, P.K., Guy, S.C., & Kenworthy, L. (2000). Behavior rating inventory of executive function. Child Neuropsychology, 6, 235–238. doi: 10.1076/chin.6.3.235.3152 CrossRef Google Scholar
- Gonen-Yaacovi, G., & Burgess, P.W. (2012). Prospective memory: The future for future intentions. Psychologica Belgica, 173(52/2-3), 173–204. Google Scholar
- Grace, J., & Malloy, P.F. (2001). Frontal Systems Behavior Scale (FrSBe). Lutz, FL: PAR. Google Scholar
- Gratton, C., Nomura, E.M., Perez, F., & D’Esposito, M. (2012). Focal brain lesions to critical locations cause widespread disruption of the modular organization of the brain. Journal of Cognitive Neuroscience, 24, 1276–1285. CrossRef Google Scholar
- Halstead, W.C. (1947). Brain and intelligence: A quantitative study of the frontal lobes. Chicago: University of Chicago Press. Google Scholar
- Harlow, J.M. (1848). Passage of an iron bar through the head. Boston Medical and Surgical Journal, 39, 389–393. Google Scholar
- Helfrich, R.F., & Knight, R.T. (2016). Oscillatory dynamics of prefrontal cognitive control. Trends in Cognitive Science, 20, 916–930. CrossRef Google Scholar PubMed
- Hwang, K., Bertolero, M., Liu, W., & D’Esposito, M. (2017). The human thalamus is an integrative hub for functional brain networks. Journal of Neuroscience, 37, 5594–5607. CrossRef Google Scholar PubMed
- Knight, C., Alderman, N., & Burgess, P.W. (2002). Development of a simplified version of the multiple errands test for use in hospital settings. Neuropsychological Rehabilitation, 12, 231–255. CrossRef Google Scholar
- Koechlin, E., Ody, C., & Kouneiher, F. (2003). The architecture of cognitive control in the human prefrontal cortex. Science, 302, 1181–1185. CrossRef Google Scholar PubMed
- Koechlin, E., & Summerfield, C. (2007). An information theoretical approach to prefrontal executive function. Trends in Cognitive Science, 11, 229–235. CrossRef Google Scholar PubMed
- Levine, B., Robertson, I.H., Clare, L., Carter, G., Hong, J., Wilson, B.A., & Stuss, D.T. (2000). Rehabilitation of executive functioning: An experimental-clinical validation of Goal Management Training. Journal of the International Neuropsychological Society, 6, 299–312. CrossRef Google Scholar PubMed
- Luria, A.R. (1966). Higher cortical functions in man (2nd ed.). New York: Basic Books. Google Scholar
- Manly, T., Hawkins, K., Evans, J., Woldt, K., & Robertson, I.H. (2002). Rehabilitation of executive function: Facilitation of effective goal management on complex tasks using periodic auditory alerts. Neuropsychologia, 40(3), 271–281. CrossRef Google Scholar PubMed
- Milner, B. (1963). Effects of different brain lesions on card sorting: The role of the frontal lobes. Archives of Neurology, 9, 90–100. CrossRef Google Scholar
- Norman, D.A., & Shallice, T. (1986). Attention to action: Willed and automatic control of behavior. In R.J. Davidson, G.E. Schwartz & D. Shapiro (Eds.), Consciousness and self-regulation: Advances in research. (Vol. IV, pp. 1–18). New York: Plenum Press. Google Scholar
- Pandya, D.N., & Barnes, C.L. (1987). Architecture and connections of the frontal lobe. In E. Perecman (Ed.), The frontal lobes revisited (pp. 41–72). New York: IRBN Press. Google Scholar
- Pandya, D.N., & Yeterian, E.H. (1996). Morphological correlations of human and monkey frontal lobes. In A.R. Damasio, H. Damasio & Y. Christen (Eds.), Neurobiology of decision making (pp. 13–46). New York: Springer-Verlag. CrossRef Google Scholar
- Petrides, M. (2013). The mid-dorsolateral prefronto-parietal network and the epoptic process. In D.T. Stuss & R.T. Knight (Eds.), Principles of frontal lobe function (2nd ed., pp. 79–89). New York: Oxford University Press. Google Scholar
- Perrine, K. (1993). Differential aspects of conceptual processing in the Category Test and Wisconsin Card Sorting Test. Journal of Clinical and Experimental Neuropsychology Section A: Neuropsychology, Development, and Cognition, 15, 461–473. CrossRef Google Scholar PubMed
- Picton, T.W., Stuss, D.T., Alexander, M.P., Shallice, T., Binns, M.A., & Gillingham, S. (2007). Effects of focal frontal lesions on response inhibition. Cerebral Cortex, 17, 826–838. CrossRef Google Scholar PubMed
- Picton, T.W., Stuss, D.T., Shallice, T., Alexander, M.P., & Gillingham, S. (2006). Keeping time: Effects of focal frontal lesions. Neuropsychologia, 44, 1195–1209. CrossRef Google Scholar PubMed
- Pinti, P., Aichelburg, C., Lind, F., Power, C., Swingler, E., Merla, A., & Tachtsidis, I. (2015). Using fibreless, wearable fNIRS to monitor brain activity in real-world cognitive tasks. Journal of Visualised Experiments, 106, e53336. doi: 10.3791/53336 Google Scholar
- Pribram, K.H. (1973). The primate frontal cortex-executive of the brain. In K.H. Pribram & A.R. Luria (Eds.), Psychophysiology of the Frontal Lobes (pp. 293–314). New York: Academic Press. CrossRef Google Scholar
- Raichle, M.E. (2015). The brain’s default mode network. Annual Review of Neuroscience, 38, 433–447. doi: 10.1146/annurev-neuro-071013-014030 CrossRef Google Scholar PubMed
- Reitan, R.M. (1958). Validity of the trail making test as an indicator of organic brain damage. Perceptual and Motor Skills, 8, 271–276. CrossRef Google Scholar
- Reitan, R.M., & Wolfson, D. (1995). Category test and trail making test as measures of frontal lobe functions. The Clinical Neuropsychologist, 9, 50–56. CrossRef Google Scholar
- Reverberi, C., Lavaroni, A., Giglib, G.L., & Skrapb, M. (2005). Specific impairments of rule induction in different frontal lobe subgroups. Neuropsychologia, 43, 460–472. CrossRef Google Scholar PubMed
- Szczepanski, S.M., & Knight, R.T. (2014). Insights into human behavior from lesions to the prefrontal cortex. Neuron, 83, 1002–1018. CrossRef Google Scholar PubMed
- Shallice, T. (1982). Specific impairments of planning. Philosophical Transactions of the Royal Society B: Biological Sciences, 298, 199–209. CrossRef Google Scholar PubMed
- Shallice, T., & Burgess, P.W. (1991). Deficits in strategy application following frontal lobe damage in man. Brain, 114, 727–741. CrossRef Google Scholar PubMed
- Shallice, T., & Burgess, P.W. (1996). The domain of supervisory processes and temporal organisation of behaviour. Philosophical Transactions of the Royal Society of London B, 351, 1405–1412. CrossRef Google Scholar PubMed
- Shallice, T., & Cooper, R. (2011). The organisation of mind. Oxford, UK: Oxford University Press. CrossRef Google Scholar
- Shallice, T., & Evans, M.E. (1978). The involvement of the frontal lobes in cognitive estimation. Cortex, 14, 294–303. CrossRef Google Scholar PubMed
- Shallice, T., Stuss, D.T., Alexander, M.P., Picton, T.W., & Derkzen, D. (2008). The multiple dimensions of sustained attention. Cortex, 44, 794–805. CrossRef Google Scholar PubMed
- Shallice, T., Stuss, D.T., Picton, T.W., Alexander, M.P., & Gillingham, S. (2008). Multiple effects of prefrontal lesions on task-switching. Frontiers in Human Neuroscience, 1, 1–12. Google Scholar PubMed
- Shammi, P., & Stuss, D.T. (1999). Humour appreciation: A role of the right frontal lobe. Brain, 122, 657–666. CrossRef Google Scholar PubMed
- Spitzer, D., White, S., Mandy, W., & Burgess, P.W. (2016). Confabulation in children with autism. Cortex, 87, 80–95. CrossRef Google Scholar PubMed
- Stuss, D.T. (2007). New approaches to prefrontal lobe testing. In B. Miller & J. Cummings (Eds.), The human frontal lobes: Functions and disorders (2nd ed., pp. 292–305). New York: Guilford Press. Google Scholar
- Stuss, D.T. (2011a). Functions of the frontal lobes: Relation to executive functions. Journal of the International Neuropsychological Society, 17, 1–7. CrossRef Google Scholar PubMed
- Stuss, D.T. (2011b). Traumatic brain injury: Relation to executive dysfunction and the frontal lobes. Current Opinion in Neurology, 24, 584–589. CrossRef Google Scholar PubMed
- Stuss, D.T., & Alexander, M.P. (2007). Is there a dysexecutive syndrome? Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 362, 901–915. Google Scholar
- Stuss, D.T., Alexander, M.P., Shallice, T., Picton, T.W., Binns, M.A., MacDonald, R., & Katz, D.I. (2005). Multiple frontal systems controlling response speed. Neuropsychologia, 43, 396–417. CrossRef Google Scholar PubMed
- Stuss, D.T., Alexander, M.P., Hamer, L., Palumbo, C., Dempster, R., Binns, M., & Izukawa, D. (1998). The effects of focal anterior and posterior brain lesions on verbal fluency. Journal of the International Neuropsychological Society, 4, 265–278. Google Scholar PubMed
- Stuss, D.T., & Benson, D.F. (1983). Emotional concomitants of psychosurgery. In K.M. Heilman & P. Satz (Eds.), Advances in neuropsychology and behavioral neurology. Vol. 1. Neuropsychology of human emotion (pp. 111–140). New York/London: The Guilford Press. Google Scholar
- Stuss, D.T., & Benson, D.F. (1986). The frontal lobes. New York: Raven Press. Google Scholar PubMed
- Stuss, D.T., Binns, M.A., Murphy, K.J., & Alexander, M.P. (2002). Dissociations within the anterior attentional system: Effects of task complexity and irrelevant information on reaction time speed and accuracy. Neuropsychology, 16, 500–513. CrossRef Google Scholar PubMed
- Stuss, D.T., Bisschop, S.M., Alexander, M.P., Levine, B., Katz, D., & Izukawa, D. (2001a). The Trail Making Test: A study in focal lesion patients. Psychological Assessment, 13, 230–239. CrossRef Google Scholar PubMed
- Stuss, D.T., Floden, D., Alexander, M.P., Levine, B., & Katz, D. (2001b). Stroop performance in focal lesion patients: Dissociation of processes and frontal lobe lesion location. Neuropsychologia, 39, 771–786. CrossRef Google Scholar PubMed
- Stuss, D.T., Gallup, G.G., & Alexander, M.P. (2001). The frontal lobes are necessary for “theory of mind”. Brain, 124, 279–286. CrossRef Google Scholar
- Stuss, D.T., Levine, B., Alexander, M.P., Hong, J., Palumbo, C., Hamer, L., & Izukawa, D. (2000). Wisconsin Card Sorting Test performance in patients with focal frontal and posterior brain damage: Effects of lesion location and test structure on separable cognitive processes. Neuropsychologia, 38, 388–402. CrossRef Google Scholar PubMed
- Stuss, D.T., Kaplan, E.F., Benson, D.F., Weir, W.S., Naeser, M.A., & Levine, H.L. (1981). Long-term effects of prefrontal leucotomy- An overview of neuropsychologic residuals. Journal of Clinical Neuropsychology, 3, 13–32. CrossRef Google Scholar PubMed
- Stuss, D.T., & Knight, R.T. (Eds.). (2002). Principles of frontal lobe function. New York: Oxford University Press. CrossRef Google Scholar
- Stuss, D.T., & Knight, R.T. (Eds.). (2013). Principles of frontal lobe function (2nd ed). New York: Oxford University Press. CrossRef Google Scholar
- Stuss, D.T., Murphy, K.J., Binns, M.A., & Alexander, M.P. (2003). Staying on the job: The frontal lobes control individual performance variability. Brain, 126, 2363–2380. CrossRef Google Scholar PubMed
- Stuss, D.T., Shallice, T., Alexander, M.P., & Picton, T.W. (1995). A multidisciplinary approach to anterior attentional functions. Annals of the New York Academy of Sciences, 769, 191–212. CrossRef Google Scholar PubMed
- Teuber, H.L. (1972). Unity and diversity of frontal lobe functions. Acta Neurobiologiae Experimentalis (Wars), 32, 615–656. Google Scholar PubMed
- Thiebaut de Schotten, M., Urbanski, M., Batrancourt, B., Levy, R., Dubois, B., Cerliani, L., & Volle, E. (2017). Rostro-caudal architecture of the frontal lobes in humans. Cerebral Cortex, 27, 4033–4047. Google Scholar PubMed
- Thurstone, L.L., & Thurstone, T.G. (1938). Primary mental abilities. Chicago: University of Chicago Press. Google Scholar PubMed
- Tilney, F. (1928). The brain, from ape to man. New York: Hoeber. Google Scholar
- Vallesi, A., McIntosh, A.R., Alexander, M.P., & Stuss, D.T. (2009). fMRI evidence of a functional network setting the criteria for withholding a response. NeuroImage, 45, 537–548. CrossRef Google Scholar PubMed
- Vallesi, A., McIntosh, A.R., Crescentini, C., & Stuss, D.T. (2012). fMRI investigation of speed-accuracy strategy switching. Human Brain Mapping, 33, 1677–1688. CrossRef Google Scholar PubMed
- Vallesi, A., McIntosh, A.R., Shallice, T., & Stuss, D.T. (2009). When time shapes behavior: fMRI evidence of brain correlates of temporal monitoring. Journal of Cognitive Neuroscience, 21, 1116–1126. CrossRef Google Scholar PubMed
- Volle, E., Costello, A., De L. Coates, L.M., Forbes, C., Towgood, K., Gilbert, S.J., & Burgess, P.W. (2012). Dissociation between verbal response initiation and suppression after prefrontal lesions. Cerebral Cortex, 22, 2428–2440. doi: 10.1093/cercor/bhr322 CrossRef Google Scholar PubMed
- Warrington, E.K. (2000). Homophone meaning generation: A new test of verbal switching for the detection of frontal lobe dysfunction. Journal of the International Neuropsychological Society, 6, 643–648. CrossRef Google Scholar PubMed
- Wheeler, M.A., Stuss, D.T., & Tulving, E. (1997). Toward a theory of episodic memory: The frontal lobes and autonoetic consciousness. Psychological Bulletin, 121, 331–354. CrossRef Google Scholar
- Wilson, B.A., Evans, J.J., Emslie, H., Alderman, N., & Burgess, P.W. (1998). The development of an ecologically valid test for assessing patients with a dysexecutive syndrome. Neuropsychological Rehabilitation, 8, 213–228. CrossRef Google Scholar
This paper highlights major developments over the past two to three decades in the neuropsychology of movement and its disorders. We focus on studies in healthy individualsand patients, which have identified cognitive contributions to movement control and animal work that has delineated the neural circuitry that makes these interactionspossible. We cover advances in three major areas: (1) the neuroanatomical aspects of the “motor” system with an emphasis on multiple parallel circuits that includecortical, corticostriate, and corticocerebellar connections; (2) behavioral paradigms that have enabled an appreciation of the cognitive influences on the preparationand execution of movement; and (3) hemispheric differences (exemplified by limb praxis, motor sequencing, and motor learning). Finally, we discuss the clinical implicationsof this work, and make suggestions for future research in this area. (JINS, 2017, 23, 768–777)
- Aflalo, T., Kellis, S., Klaes, C., Lee, B., Shi, Y., Pejsa, K., & Andersen, R.A. (2015). Decoding motor imagery from the posterior parietal cortex of a tetraplegic human. Science, 348, 906–910. CrossRef Google Scholar PubMed
- Amiez, C., & Petrides, M. (2014). Neuroimaging evidence of the anatomo-functional organization of the human cingulate motor areas. Cerebral Cortex, 24(3), 563–578. CrossRef Google Scholar PubMed
- Ashby, F.G., Alfonso-Reese, L.A., Turken, A.U., & Waldron, E.M. (1998). A neuropsychological theory of multiple systems in category learning. Psychological Review, 105(3), 442–481. CrossRef Google Scholar PubMed
- Bi, Y., Han, Z., Zhong, S., Ma, Y., Gong, G., Huang, R., & Caramazza, A. (2015). The white matter structural network underlying human tool use and tool understanding. Journal of Neuroscience, 35(17), 6822–6835. doi: 10.1523/JNEUROSCI.3709-14.2015 CrossRef Google Scholar PubMed
- Boecker, H., Jankowski, J., Ditter, P., & Scheef, L. (2008). A role of the basal ganglia and midbrain nuclei for initiation of motor sequences, NeuroImage, 39, 1356–1369. doi: 10.1016/j.neuroimage.2007.09.069 CrossRef Google Scholar PubMed
- Borchert, R.J., Rittman, T., Passamonti, L., Ye, Z., Sarni, S., Jones, S.P., & Rowe, J.B. (2016). Atomoxetine enhances connectivity of prefrontal networks in Parkinson’s Disease. Neuropsychopharmacology, 41, 2171–2177. CrossRef Google Scholar PubMed
- Buccino, G., Vogt, S., Ritzl, A., Fink, G.R., Zilles, K., Freund, H.J., & Rizzolatti, G. (2004). Neural circuits underlying imitation learning of hand actions: An event-related fMRI study. Neuron, 42(2), 323–334. CrossRef Google Scholar
- Buneo, C.A., & Andersen, R.A. (2006). The posterior parietal cortex: Sensorimotor interface for the planning and online control of visually guided movements. Neuropsychologia, 44, 2594–2606. CrossRef Google Scholar PubMed
- Buxbaum, L.J., Haaland, K.Y., Hallett, M., Wheaton, L., Heilman, K.M., Rodriguez, A., & Gonzalez Rothi, L.J. (2008). Treatment of limb apraxia: Moving forward to improved action. American Journal of Physical Medicine & Rehabilitation, 87, 149–161. doi: 10.1097/PHM.0b013e31815e6727 CrossRef Google Scholar PubMed
- Buxbaum, L.J., Johnson-Frey, S.H., & Bartlett-Willians, M. (2005). Deficient internal models for planning hand-object interactions in apraxia. Neuropsychologia, 43(6), 917–929. doi: 10.1016/j.neuropsychologia.2004.09.006 CrossRef Google Scholar PubMed
- Buxbaum, L.J., & Solenine, L. (2010). Action knowledge, visuomotor activation, and embodiment n the two action systems. Annals of the New York Academy of Sciences, 1191, 201–218. doi: 10.1111/j.1749-6632.2010.05447.x CrossRef Google Scholar PubMed
- Canessa, N., Borgo, F., Cappa, S.F., Perani, D., Falini, A., Buccino, G., & Shallice, T. The different neural correlates of action and functional knowledge in semantic memory: An fMRI study. 2008). Cerebral Cortex, 18, 740–751. doi: 10.1093/cercor/bhm110 CrossRef Google Scholar PubMed
- Caspers, S., Zilles, K., Laird, A.R., & Eickhoff, S.B. (2009). ALE meta-analysis of action observation and imitation in the human brain. Neuroimage, 50(3), 1148–1167. CrossRef Google Scholar PubMed
- Celnik, P. (2015). Understanding and modulating motor learning with cerebellar stimulation. Cerebellum, 14(2), 171–174. CrossRef Google Scholar PubMed
- Della-Maggiore, V., Malfait, N., Ostry, D.J., & Paus, T. (2004). Stimulation of the Posterior Parietal Cortex Interferes with Arm Trajectory Adjustments during the Learning of New Dynamics. The Journal of Neuroscience, 24(44), 9971–9976. doi: 10.1523/JNEUROSCI.2833-04.2004 CrossRef Google Scholar PubMed
- Delong, M.R., & Wichmann, T. Basal Ganglia Circuits as Targets for Neuromodulation in Parkinson Disease. (2015). JAMA Neurology, 72(11), 1354–1360. doi: 10.1001/jamaneurol.2015.2397 CrossRef Google Scholar PubMed
- DiRienzo, F., Debarnot, U., Daligault, S., Saruco, E., Delpuech, C., Doyon, J., & Guillot, A. (2016). Online and offline performance gains following motor imagery practice: A comprehensive review of behavioral and neuroimaging studies. Frontiers in Human Neuroscience, 10, 1–15. doi: 10.3389/fnhum.2016.00315 Google Scholar
- Doyon, J. (2008). Motor sequence learning and movement disorders. Current Opinion in Neurology, 21, 478–483. CrossRef Google Scholar PubMed
- Doyon, J., & Benali, H. (2005). Reorganization and plasticity in the adult brain during learning of motor skills. Current Opinion in Neurobiology, 15, 161–167. CrossRef Google Scholar PubMed
- Dum, R.P., & Strick, P.L. (1991). The origin of corticospinal projections from the premotor areas in the frontal lobe. Journal of Neuroscience, 11, 667–689. Google Scholar PubMed
- Dum, R.P., & Strick, P.L. (2005). Motor areas in the frontal lobe: The anatomical substrate for the central control of movement. In A. Riehle & E. Vaadia (Eds.), Motor cortex in voluntary movements (pp. 3–47). Boca Raton, FL: CRC Press LLC. Google Scholar
- Dum, R.P., Leventhal, D.J., & Strick, P.L. (2016). Motor, cognitive, and affective areas of the cerebral cortex influence the adrenal medulla. Proceedings of the National Academy of Sciences of the United States of America, 113, 9922–9927. CrossRef Google Scholar PubMed
- Elsinger, C.L., Harrington, D.L., & Rao, S.M. (2006). Reappraisal of neural circuitry mediating internally generated and externally guided actions. NeuroImage, 31, 1177–1187. CrossRef Google Scholar PubMed
- Foerde, K., & Shohamy, D. (2011). The role of the basal ganglia in learning and memory: Insight from Parkinson’s disease. Neurobiology of Learning and Memory, 96(4), 624–636. doi: 10.1016/j.nlm.2011.08.006 CrossRef Google Scholar PubMed
- Frank, M.J., Seeberger, L.C., & O’Reilly, R.C. (2004). By carrot or by stick: Cognitive reinforcement learning in parkinsonism. Science, 306, 1940–1943. doi: 10.1126/science.1102941 CrossRef Google Scholar PubMed
- Fridman, E.A., Immisch, I., Hanakawa, T., Bohlhalter, S., Waldvogel, D., Kasaku, K., & Hallett, M. (2006). The role of the dorsal stream for gesture production. NeuroImage, 29, 417–428. CrossRef Google Scholar PubMed
- Genon, S., Li, H., Fan, L., Müller, V.I., Cieslik, E.C., Hoffstaedter, F., & Eickhoff, S.B. (2017). The right dorsal premotor mosaic: Organization, functions, and connectivity. Cerebral Cortex, 27, 2095–2110. Google Scholar PubMed
- Glover, S., Wall, M.B., & Smith, A.T. (2012). Distinct cortical networks support the planning and online control of reaching-to-grasp in humans. European Journal of Neuroscience, 35, 909–915. CrossRef Google Scholar PubMed
- Goldenberg, G. (2009). Apraxia and the parietal lobes. Neuropsychologia, 47(6), 1449–1459. CrossRef Google Scholar
- Griffin, D.M., Hoffman, D.S., & Strick, P.L. (2015). Corticomotoneuronal cells are “functionally tuned”. Science, 350(6261), 667–670. CrossRef Google Scholar
- Haaland, K.Y. (2006). Left hemisphere dominance for movement. The Clinical Neuropsychologist, 20, 609–622. CrossRef Google Scholar PubMed
- Haaland, K.Y., Elsinger, C., Mayer, A., Durgerian, S., & Rao, S. (2004). Motor sequence complexity and performing hand produce differential patterns of hemispheric lateralization. Journal of Cognitive Neuroscience, 16, 621–636. CrossRef Google Scholar PubMed
- Haaland, K.Y., Harrington, D.L., & Knight, R.T. (2000). Neural representations of skilled movement. Brain, 123, 2306–2313. CrossRef Google Scholar PubMed
- Haber, S.N. (2014). The place of dopamine in the cortico-basal ganglia circuit. Neuroscience, 282, 248–257. CrossRef Google Scholar PubMed
- Haith, A.M., Huberdeau, D.M., & Krakauer, J.W. (2015). The influence of movement preparation time on the expression of visuomotor learning and savings. The Journal of Neuroscience, 35(13), 5109–5117. doi: 10.1523/JNEUROSCI.3869-14.2015 CrossRef Google Scholar PubMed
- Hamilton, J.M., Haaland, K.Y., Adair, J.C., & Brandt, J. (2003). Ideomotor limb apraxia in Huntington’s Disease: Implications for corticostriate involvement. Neuropsychologia, 41, 1–8. CrossRef Google Scholar PubMed
- Harrington, D.L., & Haaland, K.Y. (1991b). Sequencing in Parkinson’s disease: Abnormalities in programming and controlling movement. Brain, 114, 99–115. Google Scholar PubMed
- Harrington, D.L., & Haaland, K.Y. (1991a). Hemispheric specialization: Abnormalities of motor programming. Neuropsychologia, 29, 147–163. CrossRef Google Scholar
- Harrington, D.L., Rao, S.M., Haaland, K.Y., Bobholz, J.A., Mayer, A.R., Binder, J.R., & Cox, R.W. (2000). Specialized neural systems underlying representations of motor sequencing. Journal of Cognitive Neuroscience, 12, 56–77. CrossRef Google Scholar
- Harrington, D.L., & Haaland, K.Y. (1992). Motor sequencing deficits with left hemisphere damage: Are some cognitive deficits specific to limb apraxia? Brain, 115, 857–874. CrossRef Google Scholar PubMed
- Haslinger, B., Erhard, P., Weilke, F., Ceballos-Baumann, A.O., Bartenstein, P., Gräfin von Einsiedel, H., & Boecker, H. (2002). The role of lateral premotor–cerebellar–parietal circuits in motor sequence control: A parametric fMRI study. Cognitive Brain Research, 13, 159–168. CrossRef Google Scholar PubMed
- Hauert, C.A. (1986). The relationship between motor function and cognition in the developmental perspective. Italian Journal of Neurological Sciences, 5, 101–107. Google Scholar PubMed
- Heilman, K.M., Rothi, L.J., & Valenstein, E. (1982). Two forms of ideomotor apraxia. Neurology, 32, 342–346. CrossRef Google Scholar PubMed
- Hetu, S., Gregoire, M., Saimpont, A., Coll, M.-P., Eugene, F., Michon, P.-E., & Jackson, P.L. (2013). The neural network of motor imagery: An ALE meta-analysis. Neuroscience and Biobehavioral Reviews, 37, 930–949. http://dx.doi.org/10.1016/j.neubiorev.2013.03.017 CrossRef Google Scholar PubMed
- Hickok, G. (2009). Eight problems for the mirror neuron theory of action understanding in monkeys and humans. Journal of Cognitive Neuroscience, 21, 1229–1243. CrossRef Google Scholar PubMed
- Holl, A.K., Wilkinson, L., Tabrizi, S.J., Painold, A., & Jahanshahi, M. (2012). Probabilistic classification learning with corrective feedback is selectively impaired in early Huntington’s disease--evidence for the role of the striatum in learning with feedback. Neuropsychologia, 50(9), 2176–2186. doi: 10.1016/j.neuropsychologia.2012.05.021 CrossRef Google Scholar
- Hosp, J.A., Pekanovic, A., Rioult-Pedotti, M.S., & Luft, A.R. (2011). Dopaminergic projections from midbrain to primary motor cortex mediate motor skill learning. Journal of Neuroscience, 31(7), 2481–2487. CrossRef Google Scholar PubMed
- Huang, V.S., Haith, A., Mazzoni, P, Krakauer, J.W. (2011). Motor Learning and Savings in Adaptation Paradigms: Model-Free Memory for Successful Actions Combines with Internal Models. Neuron, 70, 787–801. CrossRef Google Scholar PubMed
- Kalenine, S., Buxbaum, L.P., & Coslett, H.B. (2010). Critical brain regions for action recognition: Lesion symptom mapping in left hemisphere stroke. Brain, 133, 3269–3280. doi: 10.1093/brain/awq210 CrossRef Google Scholar PubMed
- Kelly, R.M., & Strick, P.L. (2004). Macro-architecture of basal ganglia loops with the cerebral cortex: Use of rabies virus to reveal multisynaptic circuits. Progress in Brain Research, 143, 449–459. Google Scholar PubMed
- Kimura, D., & Archibald, Y. (1974). Motor functions of the left hemisphere. Brain, 97, 337–350. CrossRef Google Scholar PubMed
- Kincses, Z.T., Johansen-Berg, H., Tomassini, V., Bosnell, R., Matthews, P.M., & Beckmann, C.F. (2008). Model-free characterization of brain functional networks for motor sequence learning using fMRI. NeuroImage, 39, 1950–1958. CrossRef Google Scholar
- Knowlton, B.J., Mangels, J.A., & Squire, L.R. (1996). A neostriatal habit learning system in humans. Science, 273(5280), 1399–1402. CrossRef Google Scholar PubMed
- Kolb, B., & Milner, B. (1981). Performance of complex arm and facial movements after focal brain lesions. Neuropsychologia, 19, 491–503. CrossRef Google Scholar PubMed
- Kraeutner, S.N., Keeler, L.T., & Boe, S.G. (2015). Motor imagery-based skill acquisition disrupted following rTMS of the inferior parietal lobule. Experimental Brain Research, 234, 397–407. doi: 10.1007/s00221-015-4472-9 CrossRef Google Scholar PubMed
- Krakauer, J.W., Ghazanfar, A.A., Gomez-Marin, A., Maciver, M.A., & Poeppe, D. (2017). Neuroscience needs behavior: Correcting a reductionist bias. Neuron, 93, 480–488. CrossRef Google Scholar PubMed
- Lefebvre, S., Dricot, L., Laloux, P., Gradkowski, W., Desfontaines, P., Evrard, F., & Vandermeeren, Y. (2015). Neural substrates underlying motor skill learning in chronic hemiparetic stroke patients. Frontiers in Human Neuroscience, 9, 1–18. doi: 10.3389/fnhum.2015.00320 CrossRef Google Scholar PubMed
- Lefebvre, S., Dricot, L., Laloux, P., Desfountaines, P., Evrard, F., Peeters, A., & Vandermeeren, Y. (2017). Increased functional connectivity one week after motor learning and tDCS in stroke patients. Neuroscience, 340, 424–435. CrossRef Google Scholar PubMed
- Leiguarda, R. (2001). Limb apraxia: Cortical or subcortical. NeuroImage, 14, S137–S141. CrossRef Google Scholar PubMed
- Lemon, R.N. (2008). Descending pathways in motor control. Annual Review of Neuroscience, 31, 195–218. CrossRef Google Scholar PubMed
- Lerner, T.N., Shilyansky, C., Davidson, T.J., Evans, K.E., Beier, K.T., Zalocusky, K.A., & Deisseroth, K. (2015). Intact-brain analyses reveal distinct information carried by SNc dopamine subcircuits. Cell, 162(3), 635–647. CrossRef Google Scholar PubMed
- Luria, A.R. (1973). The working brain: An introduction to neuropsychology. New York: Basic Books. Google Scholar
- MacDonald, A.A., Seergobin, K.N., Owen, A.M., Tamjeedi, R., Monchi, O., Ganjavi, H., & MacDonald, P.A. (2013). Differential effects of Parkinson’s disease and dopamine replacement on memory encoding and retrieval. PLoS One, 8(9), e74044. doi: 10.1371/journal.pone.0074044 CrossRef Google Scholar PubMed
- MacDonald, P.A., MacDonald, A.A., Seergobin, K.N., Tamjeedi, R., Ganjavi, H., Provost, J.S., & Monchi, O. (2011). The effect of dopamine therapy on ventral and dorsal striatum-mediated cognition in Parkinson’s disease: Support from functional MRI. Brain, 134(Pt 5), 1447–1463. doi: 10.1093/brain/awr075 CrossRef Google Scholar PubMed
- Martin, T.A., Keating, J.G., Goodkin, H.P., Bastian, A.J., & Thach, W.T. (1996). Throwing while looking through prisms. I. Focal olivocerebellar lesions impair adaptation. Brain, 119(Pt 4), 1183–1198. CrossRef Google Scholar PubMed
- Mathar, D., Wilkinson, L., Holl, A.K., Neumann, J., Deserno, L., Villringer, A., & Horstmann, A. (2017). The role of dopamine in positive and negative prediction error utilization during incidental learning - Insights from Positron Emission Tomography, Parkinson’s disease and Huntington’ disease. Cortex, 90, 149–162. doi: 10.1016/j.cortex.2016.09.004 CrossRef Google Scholar
- McInnes, K., Friesen, C., & Boe, S. (2015). Specific brain lesions impair explicit motor imagery agility: A systematic review of the evidence. Archives of Physical Medicine and Rehabilitation, 97, 478–489. http://dx.doi.org/10.1016/j.apmr.2015.07.012 CrossRef Google Scholar
- Merchant, H., Harrington, D.L., & Meck, W.H. (2013). Neural basis of the perception and estimation of time. Annual Review of Neuroscience, 36, 313–336. doi: 10.1146/annurev-neuro-062012-170349 CrossRef Google Scholar
- Middleton, F.A., & Strick, P.L. (2000). Basal ganglia and cerebellar loops: Motor and cognitive circuits. Brain Research. Brain Research Reviews, 31(2–3), 236–250. CrossRef Google Scholar PubMed
- Michely, J., Volz, L.J., Barbe, M.T., Hoffstaedter, F., Viswanathan, S., Timmermann, L., & Grefkes, C. (2015). Dopaminergic modulation of motor network dynamics in Parkinson’s disease. Brain, 138, 664–678. CrossRef Google Scholar PubMed
- Muslimovic, D., Post, B., Speelman, J.D., & Schmand, B. (2007). Motor procedural learning in Parkinson’s disease. Brain, 130, 2887–2897. doi: 10.1093/brain/awm211 CrossRef Google Scholar PubMed
- Mutha, P.K., Sainburg, R.L., & Haaland, K.Y. (2010). Deficits in ideomotor apraxia reflect impaired visuomotor transformations. Neuropsychologia, 48, 3855–3867. doi: 10.1016/j.neuropsychologia.2010.09.018 CrossRef Google Scholar PubMed
- Mutha, P.K., Sainburg, P.I., & Haaland, K.Y. (2011). Left parietal regions are critical for adaptive visuomotor control. Journal of Neuroscience, 31(19), 6972–6981. doi: 10.1523/JNEUROSCI.6432-10.2011 CrossRef Google Scholar PubMed
- Mutha, P.K., Stapp, L.H., Sainburg, R.L., & Haaland, K.Y. (2014). Posterior parietal and prefrontal cortex contributions to action modification. Cortex, 57, 38–50. doi: doi.org/10.1016/j.cortex.2014.03.005 CrossRef Google Scholar PubMed
- Mutha, P.K., Stapp, L.H., Sainburg, R.L., & Haaland, K.Y. (2017). Motor adaptation deficits in ideomotor limb apraxia. Journal of the International Neuropsychological Society, 23, 139–149. doi: 10.1017/S135561771600120X CrossRef Google Scholar
- Nissen, M.J., & Bullemer, P. (1987). Attentional requirements of learning: Evidence from performance measures. Cognitive Psychology, 19, 1–32. CrossRef Google Scholar
- Orban de Xivry, J.J., Criscimagna-Hemminger, S.E., & Shadmehr, R. (2011). Contributions of the motor cortex to adaptive control of reaching depend on the perturbation schedule. Cerebral Cortex, 21(7), 1475–1484. doi: 10.1093/cercor/bhq192 CrossRef Google Scholar PubMed
- Osuriak, F., Jarry, C., & LeGall, D. (2011). Re-examining the gesture engram hypothesis. New perspectives on apraxia of tool use. Neuropsychologia, 49, 299–312. CrossRef Google Scholar
- Pammi, V.S.C., Miyapuram, K.P., Ahmed, S.K., Bapi, R.S., & Doya, K. (2012). Changing the structure of complex visuo-motor sequences selectively activates the fronto-parietal network. NeuroImage, 59, 1180–1189. CrossRef Google Scholar PubMed
- Perry, A., Stiso, J., Channge, E.F., Lin, J.J., Parvizi, J., & Knight, R.T. (2017). Mirroring in the human brain: Deciphering the spatial-temporal patterns of the human mirror neuron system. Cerebral Cortex, doi: 10.1093/cercor/bhx013 CrossRef Google Scholar
- Picard, N., & Strick, P.L. (2001). Imaging the premotor areas. Current Opinion in Neurobiology, 11(6), 663–672. CrossRef Google Scholar PubMed
- Poldrack, R.A., Clark, J., Pare-Blagoev, E.J., Shohamy, D., Creso Moyano, J., Myers, C., &Gluck, M.A. (2001). Interactive memory systems in the human brain. Nature, 414, 546–550. CrossRef Google Scholar PubMed
- Rathelot, J.A., & Strick, P.L. (2006). Muscle representation in the macaque motor cortex: An anatomical perspective. Proceedings of the National Academy of Sciences of the United States of America, 103(21), 8257–8262. CrossRef Google Scholar
- Rathelot, J.A., & Strick, P.L. (2009). Subdivisions of primary motor cortex based on cortico-motoneuronal cells. Proceedings of the National Academy of Sciences of the United States of America, 106(3), 918–923. CrossRef Google Scholar PubMed
- Rizzolatti, G., & Fogassi, L. (2014). The mirror mechanism: Recent findings and perspectives. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369, 20130420. http://dx.doi.org/10.1098/rstb.2013.0420 CrossRef Google Scholar
- Rowe, J.B., & Siebner, H.R. (2012). The motor system and its disorders. NeuroImage, 61, 464–477. CrossRef Google Scholar PubMed
- Schendan, H.E., Searl, M.M., Melrose, R.J., & Stern, C.E. (2003). An FMRI study of the role of the medial temporal lobe in implicit and explicit sequence learning. Neuron, 37, 1013–1025. doi: 10.1016/S0896-6273(03)00123-5 CrossRef Google Scholar PubMed
- Schluter, N.D., Rushworth, M.F.S., Passingham, R.E., & Mills, K.R. (1998). Temporary interference in human lateral premotor cortex suggests dominance for the selection of movements: A study using transcranial magnetic stimulation. Brain, 121, 785–799. CrossRef Google Scholar PubMed
- Serrien, D.J., Ivry, R.B., & Swinnen, S.P. (2006). Dynamics of hemispheric specialization and integration in the context of motor control. Nature Reviews Neuroscience, 7, 160–167. CrossRef Google Scholar PubMed
- Serrien, D.J., & Sovijarvi-Spape, M.M. (2016). Manual dexterity: Functional lateralization patterns and motor efficience. Brain and Cognition, 108, 42–46. doi: 10.1016/j.bandc.2016.07.005 CrossRef Google Scholar
- Shackman, A.J., Salomons, T.V., Slagter, H.A., Fox, A.S., Winter, J.J., & Davidson, R.J. (2011). The integration of negative affect, pain and cognitive control in the cingulate cortex. Nature Reviews. Neuroscience, 12(3), 154–167. CrossRef Google Scholar PubMed
- Shohamy, D., Myers, C.E., Onlaor, S., & Gluck, M.A. (2004). Role of the basal ganglia in category learning: How do patients with Parkinson’s disease learn? Behavioral Neuroscience, 118(4), 676–686. doi: 10.1037/0735-7044.118.4.676 CrossRef Google Scholar PubMed
- Siegert, R.J., Taylor, K.D., Weatherall, M., & Abernethy, D.A. (2006). Is Implicit Sequence Learning Impaired in Parkinson’s Disease? A meta-analysis. Neuropsychology, 20(4), 490–495. DOI: 10.1037/0894-4105.20.4.490 CrossRef Google Scholar PubMed
- Sirigu, A., Duhamel, J.-R., Cohen, L., Pillon, B., Duboisand, B., & Agid, Y. (1996). The mental representation of hand movements after parietal cortex damage. Science, 273(5281), 1564–1568. CrossRef Google Scholar PubMed
- Smith, J.G., & McDowall, J. (2006). When artificial grammar acquisition in Parkinson’s disease is impaired: The case of learning via trial-by-trial feedback. Brain Research, 1067(1), 216–228. doi: 10.1016/j.brainres.2005.10.025 CrossRef Google Scholar PubMed
- Smith, J., Siegert, R.J., McDowall, J., & Abernethy, D. (2001). Preserved implicit learning on both the serial reaction time task and artificial grammar in patients with Parkinson’s disease. Brain and Cognition, 45, 378–391. doi: 10.1006/brcg.2001.1286 CrossRef Google Scholar PubMed
- Smith, M.A., & Shadmehr, R. (2005). Intact ability to learn internal models of arm dynamics in Huntington’s disease but not cerebellar degeneration. Journal of Neurophysiology, 93(5), 2809–2821. CrossRef Google Scholar
- Strick, P.L., Dum, R., & Fiez, J.A. (2009). Cerebellum and non-motor function. In S.E. Hyman, T.M. Jessel, C.J. Shatz & C.F. Stevens (Eds.), Annual review of neuroscience, (Vol. 32., pp. 413–434). Palo Alto, CA: Annual Reviews. Google Scholar
- Taylor, J.A., Krakauer, J.W., & Ivry, R.B. (2014). Explicit and implicit contributions to learning in a sensorimotor adaptation task. Journal of Neuroscience, 34(8), 3023–3032. doi: 10.1523/JNEUROSCI.3619-13 CrossRef Google Scholar
- Tseng, Y.W., Diedrichsen, J., Krakauer, J.W., Shadmehr, R., & Bastian, A.J. (2007). Sensory prediction errors drive cerebellum-dependent adaptation of reaching. Journal of Neurophysiology, 98(1), 54–62. CrossRef Google Scholar PubMed
- Verstynen, T., & Sabes, P.N. (2011). How each movement changes the next: An experimental and theoretical study of fast adaptive priors in reaching. Journal of Neuroscience, 31(27), 10050–10059. doi: 10.1523/JNEUROSCI.6525-10 CrossRef Google Scholar PubMed
- Vingerhoets, G. (2014). Contribution of the posterior parietal cortex in reaching, grasping, and using objects and tools. Frontiers in Psychology, 5, 1–17. doi: 10.3389/fpsyg.2014.00151 CrossRef Google Scholar
- Wilkinson, L., Khan, Z., & Jahanshahi, M. (2009). The role of the basal ganglia and its cortical connections in sequence learning: Evidence from implicit and explicit sequence learning in Parkinson’s disease. Neuropsychologia, 47(12), 2564–2573. doi: 10.1016/j.neuropsychologia.2009.05.003 CrossRef Google Scholar PubMed
- Willingham, D.B., & Koroshetz, W.J. (1993). Evidence for dissociable motor skills Huntington’s disease patients. Psychobiology, 21(3), 173–182. Google Scholar
- Willingham, D.B., Salidis, J., & Gabrieli, J.D. (2002). Direct comparison of neural systems mediating conscious and unconscious skill learning. Learning and Memory, 1, 217–229. Google Scholar
- Wolpert, D.M., Goodbody, S.J., & Husain, M. (1998). Maintaining internal representations: The role of the human superior parietal lobe. Nature Neuroscience, 1(6), 529–533. CrossRef Google Scholar PubMed
- Wu, T., Wang, L., Hallett, M., Chen, Y., Li, K., & Chan, P. (2011). Effective connectivity of brain networks during self-initiated movement in Parkinson’s disease. NeuroImage, 55, 204–215. CrossRef Google Scholar PubMed
Neuropsychological assessment tools are the staple of our field. The development of standardized metrics sensitive to brain-behavior relationships has shaped the neuropsychologicalquestions we can ask, our understanding of discrete brain functions, and has informed the detection and treatment of neurological disorders. We identify key turningpoints and innovations in neuropsychological assessment over the past 40–50 years that highlight how the tools used in common practice today came to be. Also selectedfor emphasis are several exciting lines of research and novel approaches that are underway to further probe and characterize brain functions to enhance diagnosticand treatment outcomes. We provide a brief historical review of different clinical neuropsychological assessment approaches (Lurian, Flexible and Fixed Batteries,Boston Process Approach) and critical developments that have influenced their interpretation (normative standards, cultural considerations, longitudinal change, commonmetric batteries, and translational assessment constructs). Lastly, we discuss growing trends in assessment including technological advances, efforts to integrateneuropsychology across disciplines (e.g., primary care), and changes in neuropsychological assessment infrastructure. Neuropsychological assessment has undergone massivegrowth in the past several decades. Nonetheless, there remain many unanswered questions and future challenges to better support measurement tools and translate assessmentfindings into meaningful recommendations and treatments. As technology and our understanding of brain function advance, efforts to support infrastructure for bothtraditional and novel assessment approaches and integration of complementary brain assessment tools from other disciplines will be integral to inform brain healthtreatments and promote the growth of our field. (JINS, 2017, 23, 778–790)
- Adams, K.M., Kvale, V.I., & Keegan, J.F. (1984). Relative Accuracy of 3 Automated Systems for Neuropsychological Interpretation. Journal of Clinical Neuropsychology, 6(4), 413–431. doi: 10.1080/01688638408401232 CrossRef Google Scholar
- Adams, K.M. (1975). Automated clinical interpretation of the neuropsychological test battery: An ability based approach. Detroit, MI: Wayne State University, University Microfilms. Google Scholar
- Al-Joudi, H. (2015). Availability of Arabic language tests in the Middle East and North Africa. In J.H. University (Ed.), INS NET: JINS. Google Scholar
- Ardila, A., Rosselli, M., Matute, E., & Guajardo, S. (2005). The influence of the parents’ educational level on the development of executive functions. Developmental Neuropsychology, 28(1), 539–560. doi: 10.1207/s15326942dn2801_5 CrossRef Google Scholar PubMed
- Arnold, B.R., Montgomery, G.T., Castaneda, I., & Longoria, R. (1994). Acculturation and performance of Hispanics on selected Halstead-Reitan neuropsychological tests. Assessment, 1(3), 239–248. CrossRef Google Scholar
- Bauer, R.M., Iverson, G.L., Cernich, A.N., Binder, L.M., Ruff, R.M., & Naugle, R.I. (2012). Computerized neuropsychological assessment devices: Joint position paper of the American Academy of Clinical Neuropsychology and the National Academy of Neuropsychology. The Clinical Neuropsychologist, 26(2), 177–196. doi: 10.1080/13854046.2012.663001 CrossRef Google Scholar PubMed
- Bediou, B., Ryff, I., Mercier, B., Milliery, M., Henaff, M.A., D’Amato, T., & Krolak-Salmon, P. (2009). Impaired social cognition in mild Alzheimer disease. Journal of Geriatric Psychiatry and Neurology, 22(2), 130–140. doi: 10.1177/0891988709332939 CrossRef Google Scholar PubMed
- Benton, A.L. (1994). Neuropsychological assessment. Annual Review of Psychology, 45, 1–23. doi: 10.1146/Annurev.Ps.45.020194.000245 CrossRef Google Scholar PubMed
- Benton, A.L., Hamsher, K.S., Varney, N., & Spreen, O. (1983). Contributions to neuropsychological assessment: A clinical manual. Oxford, UK: Oxford University Press. Google Scholar
- Bezdicek, O., Motak, L., Axelrod, B.N., Preiss, M., Nikolai, T., Vyhnalek, M., & Ruzicka, E. (2012). Czech version of the Trail Making Test: Normative data and clinical utility. Archives of Clinical Neuropsychology, 27(8), 906–914. doi: 10.1093/arclin/acs084 CrossRef Google Scholar PubMed
- Bezdicek, O., Stepankova, H., Motak, L., Axelrod, B.N., Woodard, J.L., Preiss, M., & Poreh, A. (2014). Czech version of Rey Auditory Verbal Learning test: Normative data. Aging Neuropsychology and Cognition, 21(6), 693–721. doi: 10.1080/13825585.2013.865699 CrossRef Google Scholar PubMed
- Bigler, E.D. (2007). A motion to exclude and the ‘fixed’ versus ‘flexible’ battery in ‘forensic’ neuropsychology: Challenges to the practice of clinical neuropsychology. Archives of Clinical Neuropsychology, 22(1), 45–51. doi: 10.1016/j.acn.2006.06.019 CrossRef Google Scholar PubMed
- Brouliette, R.M., Foil, H., Fontenot, S., Correro, A., Allen, R., Martin, C.K., & Keller, J.N. (2013). Feasibilty, reliability, and validity of a smartphone based application for the assessment of cognitive function in the elderly. PLoS One, 8(6), e65925. CrossRef Google Scholar
- Carey, C.L., Woods, S.P., Rippeth, J.D., Heaton, R.K., Grant, I., & HIV Neurobehavioral Research Center (HNRC) Group. (2006). Prospective memory in HIV-1 infection. Journal of Clinical and Experimental Neuropsychology, 28(4), 536–548. CrossRef Google Scholar PubMed
- Carter, C.S., & Barch, D.M. (2007). Cognitive neuroscience-based approaches to measuring and improving treatment effects on cognition in schizophrenia: The CNTRICS initiative. Schizophrenia Bulletin, 33(5), 1131–1137. CrossRef Google Scholar PubMed
- Cassitto, M.G., Camerino, D., Hanninen, H., & Anger, W.K. (1990). International collaboration to evaluate the Who Neurobehavioral Core Test Battery. In B.L. Johnson, W.K. Anger, A. Durao & C. Xintaras (Eds.), Advances in neurobehavioral toxicology: Applications in environmental and occupational health (pp. 203–223). Chelsea, MI: Lewis. Google Scholar
- Chelune, G.J., Naugle, R.I., Luders, H., Selak, J., & Awad, I.A. (1993). Individual change after epilepsy surgery: Practice effects and base-rate information. Neuropsychology, 7, 41–52. CrossRef Google Scholar
- Crawford, J.R., & Garthwaite, P.H. (2007). Using regression equations built from summary data in the neuropsychological assessment of the individual case. Neuropsychology, 21(5), 611–620. doi: 10.1037/0894-4105.21.5.611 CrossRef Google Scholar PubMed
- Crawford, J.R., Garthwaite, P.H., Denham, A.K., & Chelune, G.J. (2012). Using regression equations built from summary data in the psychological assessment of the individual case: Extension to multiple regression. Psychological Assessment, 24(4), 801–814. doi: 10.1037/a0027699 CrossRef Google Scholar PubMed
- Cutler, N.R., Shrotriya, R.C., Sramek, J.J., Veroff, A.E., Seifert, R.D., Reich, L.A., && Hironaka, D.Y. (1993). The use of the Computerized Neuropsychological Test Battery (CNTB) in an efficacy and safety trial of BMY 21,502 in Alzheimer’s disease. Annals of the New York Academy of Sciences, 695, 332–336. CrossRef Google Scholar
- Cysique, L.A., Franklin, D. Jr., Abramson, I., Ellis, R.J., Letendre, S., Collier, A., & Simpson, D. (2011). Normative data and validation of a regression based summary score for assessing meaningful neuropsychological change. Journal of Clinical and Experimental Neuropsychology, 33(5), 505–522. CrossRef Google Scholar PubMed
- Damasio, A.R., & Tranel, D. (1993). Nouns and verbs are retrieved with differently distributed neural systems. Proceedings of the National Academy of Sciences of the United States of America, 90(11), 4957–4960. doi: 10.1073/Pnas.90.11.4957 CrossRef Google Scholar PubMed
- de Almeida, S.M., Ribeiro, C.E., de Pereira, A.P., Badiee, J., Cherner, M., Smith, D., & Heaton, R.K. (2013). Neurocognitive impairment in HIV-1 clade C-versus B-infected individuals in Southern Brazil. Journal of Neurovirology, 19(6), 550–556. CrossRef Google Scholar
- Delis, D.C., Kramer, J.H., Kaplan, E., & Ober, B.A. (1987). California Verbal Learning Test: Adult version. Manual. San Antonio, TX: Psychological Corportation. Google Scholar
- Delis, D., Kramer, J.H., Kaplan, E., & Ober, B. (2000). The California Verbal Learning Test–Second edition. San Antonio, TX: The Psychological Corporation. Google Scholar
- Delis, D., Kaplan, E., & Kramer, J. (2001). Delis-Kaplan Executive Function System. San Antonio, TX: The Psychological Corporation. Google Scholar PubMed
- Draper, I.T. (1976). Luria’s neuropsychological investigation. Journal of Neurology, Neurosurgery, and Psychiatry, 39(4), 409–410. CrossRef Google Scholar
- Deuel, R.K. (1971). Assessment of brain damage: A neuropsychological key approach. Archives of Neurology, 25(1), 95–95. CrossRef Google Scholar
- Einstein, G.O., & Mcdaniel, M.A. (1990). Normal aging and prospective memory. Journal of Experimental Psychology. Learning Memory and Cognition, 16(4), 717–726. doi: 10.1037/0278-7393.16.4.717 CrossRef Google Scholar PubMed
- Ekman, P., & Friesen, W.V. (1976). Pictures of facial affect. Palo Alto, CA: Consulting Psychologists Press. Google Scholar
- Ellis, J., & Kvavilashvili, L. (2000). Prospective memory in 2000: Past, present, and future directions. Applied Cognitive Psychology, 14, S1–S9. doi: 10.1002/Acp.767.Abs CrossRef Google Scholar
- Elwood, R.W. (2001). MicroCog: Assessment of cognitive functioning. Neuropsychology Review, 11(2), 89–100. doi: 10.1023/A:1016671201211 CrossRef Google Scholar PubMed
- Fasfous, A.F., Al-Joudi, H.F., Puente, A.E., & Perez-Garcia, M. (2017). Neuropsychological measures in the Arab World: A systematic review. Neuropsychology Review, 27, 158–173. doi: 10.1007/s11065-017-9347-3 CrossRef Google Scholar PubMed
- Finkelstein, J.N. (1977). BRAIN: A computer program for interpretation of the Halstead-Reitan Neuropsychological Test Battery. New York, NY: Columbia University, University Microfilms. Google Scholar
- Flores, I., Casaletto, K.B., Marquine, M.J., Umlauf, A., Moore, D.J., Mungas, D., & Heaton, R.K. (2017). Performance of Hispanics and Non-Hispanic Whites on the NIH Toolbox Cognition Battery: The roles of ethnicity and language backgrounds. The Clinical Neuropsychologist, 31, 783–797. doi: 10.1080/13854046.2016.1276216 CrossRef Google Scholar PubMed
- Fratti, S., Bowden, S.C., & Cook, M.J. (2016). Reliability and validity of the CogState computerized battery in patients with seizure disorders and healthy young adults: Comparison with standard neuropsychological tests. Clin Neuropsychol, 31, 569–586. doi: 10.1080/13854046.2016.1256435 CrossRef Google Scholar PubMed
- Fuiji, D. (2017). Conducting a culturally informed neuropsychological evaluation. Washington, DC: American Psychological Association. CrossRef Google Scholar
- Gershon, R.C., Wagster, M.V., Hendrie, H.C., Fox, N.A., Cook, K.F., & Nowinski, C.J. (2013). NIH toolbox for assessment of neurological and behavioral function. Neurology, 80, S2–S6. doi: 10.1212/WNL.0b013e3182872e5f CrossRef Google Scholar PubMed
- Ghate, M., Mehendale, S., Meyer, R., Umlauf, A., Deutsch, R., Kamat, R., & Alexander, T. (2015). The effects of antiretroviral treatment initiation on cognition in HIV-infected individuals with advanced disease in Pune, India. Journal of Neurovirology, 21(4), 391–398. CrossRef Google Scholar PubMed
- Golden, C.J., Purisch, A.D., & Hammeke, T.A. (1979). The Luria-Nebraska Neuropsychological Battery: A manual for clinical and experimental uses. Lincoln, NE: University of Nebraska Press. Google Scholar
- Grant, I., & Heaton, R.K. (2015). Ralph M. Reitan: A founding father of neuropsychology. Archives of Clinical Neuropsychology, 30(8), 760–761. doi: 10.1093/arclin/acv077 CrossRef Google Scholar
- Green, M.F., Nuechterlein, K.H., Gold, J.M., Barch, D.M., Cohen, J., Essock, S., & Marder, S.R. (2004). Approaching a consensus cognitive battery for clinical trials in schizophrenia: The NIMH-MATRICS conference to select cognitive domains and test criteria. Biological Psychiatry, 56(5), 301–307. doi: 10.1016/j.biopsych.2004.06.023 CrossRef Google Scholar PubMed
- Green, M.F., Olivier, B., Crawley, J.N., Penn, D.L., & Silverstein, S. (2005). Social cognition in schizophrenia: Recommendations from the measurement and treatment research to improve cognition in schizophrenia new approaches conference. Schizophrenia Bulletin, 31(4), 882–887. doi: 10.1093/schbul/sbi049 CrossRef Google Scholar PubMed
- Greenwald, A.G., McGhee, D.E., & Schwartz, J.L.K. (1998). Measuring individual differences in implicit cognition: The implicit association test. Journal of Personality and Social Psychology, 74(6), 1464–1480. doi: 10.1037/0022-3514.74.6.1464 CrossRef Google Scholar PubMed
- Gupta, S., Iudicello, J.E., Shi, C., Letendre, S., Knight, A., Li, J., & Atkinson, J.H. (2014). Absence of neurocognitive impairment in a large Chinese sample of HCV-infected injection drug users receiving methadone treatment. Drug and Alcohol Dependence, 137, 29–35. CrossRef Google Scholar
- Harris, M.E., Ivnik, R.J., & Smith, G.E. (2002). Mayo’s older americans normative studies: Expanded AVLT recognition trial norms for ages 57 to 98. Journal of Clinical and Experimental Neuropsychology, 24(2), 214–220. doi: 10.1076/Jcen.24.2.214.995 CrossRef Google Scholar PubMed
- Heaton, R.K., Grant, I., & Matthews, C.G. (1991). Comprehensive norms for an expanded Halstead-Reitan battery: Demographic corrections, research findings, and clinical applications. Odessa, FL: Psychological Assessment Resources. Google Scholar
- Heaton, R.K., Temkin, N., Dikmen, S., Avitable, N., Taylor, M.J., Marcotte, T.D., & Grant, I. (2001). Detecting change: A comparison of three neuropsychological methods, using normal and clinical samples. Archives of Clinical Neuropsychology, 16(1), 75–91. doi: 10.1016/S0887-6177(99)00062-1 CrossRef Google Scholar PubMed
- Heaton, R.K., Miller, S.W., Taylor, J.T., & Grant, I. (2004). Revised comprehensive norms for an expanded Halstead-Reitan Battery: Demographically adjusted neuropsychological norms for African American and Caucasian adults. Lutz, FL: Psychological Assessment Resources, Inc. Google Scholar
- Heaton, R.K., Cysique, L.A., Jin, H., Shi, C., Yu, X., Letendre, S., & Marcotte, T.D. (2008). Neurobehavioral effects of human immunodeficiency virus infection among former plasma donors in rural China. Journal of Neurovirology, 14(6), 536–549. CrossRef Google Scholar PubMed
- Hermann, B.P., Seidenberg, M., Schoenfeld, J., Peterson, J., Leveroni, C., & Wyler, A.R. (1996). Empirical techniques for determining the reliability, magnitude, and pattern of neuropsychological change after epilepsy surgery. Epilepsia, 37(10), 942–950. CrossRef Google Scholar PubMed
- Hestad, K.A., Menon, J.A., Serpell, R., Kalungwana, L., Mwaba, S.O., Kabuba, N., & Heaton, R.K. (2016). Do neuropsychological test norms from African Americans in the United States generalize to a Zambian population?. Psychological Assessment, 28(1), 18. CrossRef Google Scholar PubMed
- Holtzer, R., Goldin, Y., Zimmerman, M., Katz, M., Buschke, H., & Lipton, R.B. (2008). Robust norms for selected neuropsychological tests in older adults. Archives of Clinical Neuropsychology, 23(5), 531–541. doi: 10.1016/j.acn.2008.05.004 CrossRef Google Scholar PubMed
- Homer, B.D., Solomon, T.M., Moeller, R.W., Mascia, A., DeRaleau, L., & Halkitis, P.N. (2008). Methamphetamine abuse and impairment of social functioning: A review of the underlying neurophysiological causes and Behavioral implications. Psychological Bulletin, 134(2), 301–310. doi: 10.1037/0033-2909.134.2.301 CrossRef Google Scholar PubMed
- Ivnik, R.J., Malec, J.F., Smith, G.E., Tangalos, E.G., Petersen, R.C., Kokmen, E., && Kurland, L.T. (1992a). Mayo’s Older Americans Normative Studies: WAIS-R norms for ages 56 to 97. The Clinical Neuropsychologist, 6(S1), 1–30. CrossRef Google Scholar
- Ivnik, R.J., Malec, J.F., Smith, G.E., Tangalos, E.G., Petersen, R.C., Kokmen, E., && Kurland, L.T. (1992b). Mayo’s Older Americans Normative Studies: Updated AVLT norms for ages 56 to 97. The Clinical Neuropsychologist, 6(S1), 83–104. CrossRef Google Scholar
- Jacobson, N.S., & Truax, P. (1991). Clinical-significance - A statistical approach to defining meaningful change in psychotherapy-research. Journal of Consulting and Clinical Psychology, 59(1), 12–19. doi: 10.1037//0022-006x.59.1.12 CrossRef Google Scholar PubMed
- Kabuba, N., Menon, J.A., Franklin, D.R., Heaton, R.K., & Hestad, K.A. (2017). Use of Western neuropsychological test battery in detecting hiv-associated neurocognitive disorders (HAND) in Zambia. AIDS and Behavior, 21(6), 1717–1727. CrossRef Google Scholar
- Kamat, R., Ghate, M., Gollan, T.H., Meyer, R., Vaida, F., Heaton, R.K., & Mehendale, S. (2012). Effects of Marathi-Hindi bilingualism on neuropsychological performance. Journal of the International Neuropsychological Society, 18(2), 305–313. CrossRef Google Scholar PubMed
- Kamat, R., McCutchan, A., Kumarasamy, N., Marcotte, T.D., Umlauf, A., Selvamuthu, P., & Bharti, A.R. (2017). Neurocognitive functioning among HIV-positive adults in southern India. Journal of Neurovirology. [Epub ahead of print]. Google Scholar
- Kaplan, E. (1988). The process approach to neuropsychological assessment. Aphasiology, 2(3-4), 309–311. doi: 10.1080/02687038808248930 CrossRef Google Scholar PubMed
- Kaplan, E., Fein, D., Morris, R., & Delis, D. (1991). The WAIS-R as a neuropsychological instrument. San Antonio, TX: Psychological Corporation. Google Scholar
- Kliegel, M., Altgassen, M., Hering, A., & Rose, N.S. (2011). A process-model based approach to prospective memory impairment in Parkinson’s disease. Neuropsychologia, 49(8), 2166–2177. doi: 10.1016/j.neuropsychologia.2011.01.024 CrossRef Google Scholar PubMed
- Ko, J., Rosen, A.B., Simpson, K.J., & Brown, C.N. (2014). Cross-cultural adaption and reliability of the Korean version of the identification of functional ankle instability. Medicine and Science in Sports and Exercise, 46(5), 203–203. CrossRef Google Scholar
- Kramer, J.H., Mungas, D., Possin, K.L., Rankin, K.P., Boxer, A.L., Rosen, H.J., & Widmeyer, M. (2014). NIH EXAMINER: Conceptualization and development of an executive function battery. Journal of the International Neuropsychological Society, 20(1), 11–19. CrossRef Google Scholar PubMed
- Kreutzer, J.S., DeLuca, J., & Caplan, B. (Eds) 2011). Encyclopedia of Clinical Neuropsychology. Halstead-Reitan Neuropsychology Test Battery (pp. 1201–1205). New York: Springer. CrossRef Google Scholar
- Larrabee, G.J. (2008). Flexible vs. fixed batteries in forensic neuropsychological assessment: Reply to Bigler and Hom. Archives of Clinical Neuropsychology, 23(7-8), 763–776. doi: 10.1016/j.acn.2008.09.004 CrossRef Google Scholar
- Lenehan, M.E., Summers, M.J., Saunders, N.L., Summers, J.J., & Vickers, J.C. (2016). Does the Cambridge Automated Neuropsychological Test Battery (CANTAB) distinguish between cognitive domains in healthy older adults? Assessment, 23(2), 163–172. doi: 10.1177/1073191115581474 CrossRef Google Scholar PubMed
- Lezak, M.D. (1976). Neuropsychological assessment. Oxford, England: Oxford University Press. Google Scholar PubMed
- Loftus, E. (1971). Memory for intentions: The effect of presence of a cue and interpolated activity. Psychonomic Science, 23, 315–316. CrossRef Google Scholar
- Lucas, J.A., Ivnik, R.J., Willis, F.B., Ferman, T.J., Smith, G.E., Parfitt, F.C., & Graff-Radford, N.R. (2005). Mayo’s older African Americans normative studies: Normative data for commonly used clinical neuropsychological measures. Clinical Neuropsychologist, 19(2), 162–183. doi: 10.1080/13854040590945265 CrossRef Google Scholar PubMed
- Luria, A.R. (1966). Higher cortical functions in man. New York: Springer. Google Scholar
- Machulda, M.M., Ivnik, R.J., Smith, G.E., Ferman, T.J., Boeve, B.F., Knopman, D., & Tangalos, E.G. (2008). Mayo’s older Americans normative studies: Visual form discrimination and copy trial of the Rey-Osterrieth complex figure. Journal of Clinical and Experimental Neuropsychology, 29(5), 377–384. doi: 10.1080/13803390701850817 CrossRef Google Scholar PubMed
- Malda, M., van de Vijver, F.J.R., Srinivasan, K., Transler, C., & Sukumar, P. (2010). Traveling with cognitive tests: Testing the validity of a KABC-II adaptation in India. Assessment, 17(1), 107–115. doi: 10.1177/1073191109341445 CrossRef Google Scholar PubMed
- Manly, J.J. (2008). Critical issues in cultural neuropsychology: Profit from diversity. Neuropsychology Review, 18(3), 179. CrossRef Google Scholar PubMed
- Manly, J.J., Jacobs, D.M., Touradji, P., Small, S.A., & Stern, Y. (2002). Reading level attenuates differences in neuropsychological test performance between African American and White elders. Journal of the International Neuropsychological Society, 8(3), 341–348. CrossRef Google Scholar PubMed
- Marcotte, T.D., & Grant, I. (Eds.) (2009). Neuropsychology of everyday functioning. New York: Guilford Press. Google Scholar
- McCaffrey, R.J. (Ed.) (2007). Automated neuropsychological assessment metrics [Special issue]. Archives of Clinical Neuropsychology, 22S, S1. CrossRef Google Scholar
- McDonald, S. (2017). Emotions are rising: The growing field of affect neuropsychology. Journal of the International Neuropsychological Society, 23, 719–731. CrossRef Google Scholar
- McDonald, S., Flanagan, S., & Rollins, J. (2011). The awareness of social inference test (Revised). Sydney, Australia: Pearson Assessment. Google Scholar PubMed
- McDonald, S., Flanagan, S., Rollins, J., & Kinch, J. (2003). TASIT: A new clinical tool for assessing social perception after traumatic brain injury. Journal of Head Trauma Rehabilitation, 18, 219–238. CrossRef Google Scholar PubMed
- McSweeny, A.J., Naugle, R.I., Chelune, G.J., & Luders, H. (1993). “T scores for change”: An illustration of a regression approach to depicting change in clinical neuropsychology. The Clinical Neuropsychologist, 7(3), 300–312. CrossRef Google Scholar
- Merikle, P.M., Smilek, D., & Eastwood, J.D. (2001). Perception without awareness: Perspectives from cognitive psychology. Cognition, 79(1), 115–134. CrossRef Google Scholar PubMed
- Moore, D.J., Palmer, B.W., Patterson, T.L., & Jeste, D.V. (2007). A review of performance-based measures of functional living skills. Journal of Psychiatric Research, 41(1-2), 97–118. doi: 10.1016/j.psychires.2005.10.008 CrossRef Google Scholar PubMed
- Nell, V. (1999). Luria in Uzbekistan: The vicissitudes of cross-cultural neuropsychology. Neuropsychology Review, 9(1), 45–52. doi: 10.1023/A:1025643004782 CrossRef Google Scholar PubMed
- Nell, V., Myers, J., Colvin, M., & Rees, D. (1994). Neuropsychological assessment of organic solvent effects in South-Africa - Test selection, adaptation, scoring, and validation issues. Environmental Research, 63, 301–318. CrossRef Google Scholar PubMed
- Nuechterlein, K.H., Green, M.F., Kern, R.S., Baade, L.E., Barch, D.M., Cohen, J.D., & Marder, S.R. (2008). The MATRICS consensus cognitive battery, part 1: Test selection, reliability, and validity. American Journal of Psychiatry, 165(2), 203–213. doi: Doi 10.1176/Appi.Ajp.2007.07010042 CrossRef Google Scholar PubMed
- Parsey, C.M., & Schmitter-Edgecombe, M. (2013). Applications of technology in neuropsychological assessment. The Clinical Neuropsychologist, 27(8), 1328–1361. doi: 10.1080/13854046.2013.834971 CrossRef Google Scholar PubMed
- Parsons, T.D. (2015). Virtual reality for enhanced ecological validity and experimental control in the clinical, affective and social neurosciences. Frontiers in Human Neuroscience, 9, 660. doi: Artn 66010.3389/Fnhum.2015.00660 CrossRef Google Scholar PubMed
- Piatt, A.L., Fields, J.A., Paolo, A.M., Koller, W.C., & Troster, A.I. (1999). Lexical, semantic, and action verbal fluency in Parkinson’s disease with and without dementia. Journal of Clinical and Experimental Neuropsychology, 21(4), 435–443. doi: 10.1076/Jcen.21.4.435.885 CrossRef Google Scholar PubMed
- Piatt, A.L., Fields, J.A., Paolo, A.M., & Troster, A.I. (1999). Action (verb naming) fluency as an executive function measure: Convergent and divergent evidence of validity. Neuropsychologia, 37(13), 1499–1503. doi: 10.1016/S0028-3932(99)00066-4 CrossRef Google Scholar PubMed
- Pijnenborg, G.H., Withaar, F.K., Evans, J.J., van den Bosch, R.J., Timmerman, M.E., & Brouwer, W.H. (2009). The predictive value of measures of social cognition for community functioning in schizophrenia: Implications for neuropsychological assessment. Journal of the International Neuropsychological Society, 15(2), 239–247. doi: 10.1017/S1355617709090341 CrossRef Google Scholar PubMed
- Pinkham, A.E., Hopfinger, J.B., Pelphrey, K.A., Piven, J., & Penn, D.L. (2008). Neural bases for impaired social cognition in schizophrenia and autism spectrum disorders. Schizophrenia Research, 99(1-3), 164–175. doi: 10.1016/j.schres.2007.10.024 CrossRef Google Scholar PubMed
- Purisch, A.D. (2001). Misconceptions about the Luria-Nebraska Neuropsychological Battery. NeuroRehabilitation, 16(4), 275–280. Google Scholar PubMed
- Raskin, S.A. (2004). Memory for intentions screening test. Paper presented at the Journal of the International Neuropsychological Society. Google Scholar
- Reeves, D.L., Winter, K.P., Bleiberg, J., & Kane, R.L. (2007). ANAM Genogram: Historical perspectives, description and current endeavors. Archives of Clinical Neuropsychology, 22(Suppl. 1), S15–S37. CrossRef Google Scholar PubMed
- Reitan, R.M. (1985). Halstead-Reitan Neuropsychological Test Battery: Theory and clinical interpretation. Tuscon, AZ: Neuropsychology Press. Google Scholar
- Reitan, R.M. (1994). Ward Halstead’s contributions to neuropsychology and the Halstead-Reitan Neuropsychological Test Battery. Journal of Clinical Psychology, 50(1), 47–70. doi: 10.1002/1097-4679(199401)50:1<47::Aid-Jclp2270500106>3.0.Co;2-X3.0.CO;2-X>CrossRef Google Scholar PubMed
- Reitan, R.M., & Davidson, L.D. (1974). Clinical neuropsychology: Current status and applications. Washington, DC: Winston. Google Scholar
- Ruffieux, N., Njamnshi, A.K., Mayer, E., Sztajzel, R., Eta, S.C., Doh, R.F., & Hauert, C.A. (2010). Neuropsychology in Cameroon: First normative data for cognitive tests among school-aged children. Child Neuropsychology, 16(1), 1–19. doi: 10.1080/09297040902802932 CrossRef Google Scholar PubMed
- Russell, E.W., Neuringer, C., & Goldstein, G. (1970). Assessment of brain damage: A neuropsychological key approach. New York: Interscience. Google Scholar
- Sahakian, B.J., & Owen, A.M. (1992). Computerized assessment in neuropsychiatry using CANTAB: Discussion paper. Journal of the Royal Society of Medicine, 85(7), 399–402. Google Scholar PubMed
- Sawrie, S.M., Chelune, G.J., Naugle, R.I., & Luders, H.O. (1996). Empirical methods for assessing meaningful neuropsychological change following epilepsy surgery. Journal of the International Neuropsychological Society, 2(6), 556–564. CrossRef Google Scholar PubMed
- Shany-Ur, T., & Rankin, K.P. (2011). Personality and social cognition in neurodegenerative disease. Current Opinion in Neurology, 24(6), 550–555. doi: 10.1097/WCO.0b013e32834cd42a CrossRef Google Scholar PubMed
- Shi, C., Kang, L., Yao, S., Ma, Y., Li, T., Liang, Y., & Zhang, C. (2015). The MATRICS consensus cognitive battery (MCCB): Co-norming and standardization in China. Schizophrenia Research, 169(1), 109–115. CrossRef Google Scholar
- Sliwinski, M.J., Mogle, J.A., Hyun, J., Munoz, E., Smyth, J.M., & Lipton, R.B. (2016). Reliability and validity of ambulatory cognitive assessments. Assessment. [Epub ahead of print]. doi: 10.1177/1073191116643164 CrossRef Google Scholar
- Smith, G.E., Wong, J.S., Ivnik, R.J., & Malec, J.F. (1997). Mayo’s older American normative studies: Separate norms for WMS-R logical memory stories. Assessment, 4(1), 79–86. CrossRef Google Scholar
- Tate, R. (2010). A compendium of tests, scales and questionnaires: The practitioner’s guide to measuring outcomes after acquired brain impairment. New York: Psychology Press. Google Scholar
- Temkin, N.R., Heaton, R.K., Grant, I., & Dikmen, S.S. (1999). Detecting significant change in neuropsychological test performance: A comparison of four models. Journal of the International Neuropsychological Society, 5(4), 357–369. CrossRef Google Scholar PubMed
- Tranel, D. (2009). The Iowa-Benton School of Neuropsychological Assessment. In I. Grant & K.M. Adams (Eds.), Neuropsychological assessment of neuropsychiatric and neuromedical disorders. New York: Oxford University Press. Google Scholar
- Twamley, E.W., Woods, S.P., Dawson, M.S., Narvaez, J.M., & Jeste, D.V. (2007). Remembering to remember: Prospective memory impairment in schizophrenia. Schizophrenia Bulletin, 33(2), 578–578. Google Scholar
- Valciukas, J.A., Levin, S.M., Nicholson, W.J., & Selikoff, I.J. (1986). Neurobehavioral assessment of Mohawk Indians for subclinical indications of methyl mercury neurotoxicity. Archives of Environmental Health, 41(4), 269–272. CrossRef Google Scholar PubMed
- Weinstein, C.S., Fucetola, R., & Mollica, R. (2001). Neuropsychological issues in the assessment of refugees and victims of mass violence. Neuropsychology Review, 11(3), 131–141. doi: 10.1023/A:1016650623996 CrossRef Google Scholar PubMed
- Wilson, B., Alderman, N., Burgess, P., Emslie, H., & Evans, J.J. (1996). Behavioural assessment of the Dysexecutive Syndrome (BADS). Manual. London: Harcourt Assessment. Google Scholar
- Woods, S.P., Carey, C.L., Troster, A.I., Grant, I., & HIV Neurobehavioral Research Center Group. (2005). Action (verb) generation in HIV-1 infection. Neuropsychologia, 43(8), 1144–1151. doi: 10.1016/j.neuropsychologia.2004.11.018 CrossRef Google Scholar PubMed
- Woods, S.P., Dawson, M.S., Weber, E., Gibson, S., Grant, I., Atkinson, J.H., & HIV Neurobehavioral Research Center Group. (2009). Timing is everything: Antiretroviral nonadherence is associated with impairment in time-based prospective memory. Journal of the International Neuropsychological Society, 15(1), 42–52. doi: 10.1017/S1355617708090012 CrossRef Google Scholar PubMed
- Woods, S.P., Iudicello, J.D., Dawson, M.S., Moran, L.M., Carey, C.L., Letendre, S.L., & Grant, I. (2007). HIV-associated prospective memory deficits predict functional dependence. Clinical Neuropsychologist, 21(4), 701–701. Google Scholar
- Woods, S.P., Iudicello, J.E., Moran, L.M., Carey, C.L., Dawson, M.S., Grant, I., & HIV Neurobehavioral Research Center Group. (2008). HIV-Associated prospective memory impairment increases risk of dependence in everyday functioning. Neuropsychology, 22(1), 110–117. doi: 10.1037/0894-4105.22.1.110 CrossRef Google Scholar PubMed
- Woods, S.P., Iudicello, J.E., Morgan, E.E., Cameron, M.V., Doyle, K.L., Smith, T.V., & HIV Neurobehavioral Research Center Group. (2016). Health-related everyday functioning in the internet age: HIV-associated neurocognitive disorders disrupt online pharmacy and health chart navigation skills. Archives of Clinical Neuropsychology, 31(2), 176–185. doi: 10.1093/arclin/acv090 Google Scholar PubMed
- Woods, S.P., Morgan, E.E., Dawson, M., Scott, J.C., & Grant, I., HIV Neurobehavioral Research Center Group. (2006). Action (verb) fluency predicts dependence in instrumental activities of daily living in persons infected with HIV-1. Journal of Clinical and Experimental Neuropsychology, 28(6), 1030–1042. doi: 10.1080/13803390500350985 CrossRef Google Scholar
- Woods, S.P., Scott, J.C., Sires, D.A., Grant, I., Heaton, R.K., & Troster, A.I., HIV Neurobehavioral Research Center Group. (2005). Action (verb) fluency: Test-retest reliability, normative standards, and construct validity. Journal of the International Neuropsychological Society, 11(4), 408–415. doi: 10.1017/S1355617705050460 Google Scholar PubMed
- Woods, S.P., Iudicello, J.E., Morgan, E.E., Verduzco, M., Smith, T.V., & Cushman, C., HIV Neurobehavioral Research Center Group. (In press). Household everyday functioning in the Internet age: Online shopping and banking skills are affected in HIV-associated neurocognitive disorders. Journal of the International Neuropsychological Society. Google Scholar
- Zhu, J.J., & Tulsky, D.S. (2000). Co-norming the WAIS-III and WMS-III: Is there a test-order effect on IQ and memory scores? Clinical Neuropsychologist, 14(4), 461–467. doi: 10.1076/Clin.14.4.461.7197 CrossRef Google Scholar
- Zogg, J.B., Woods, S.P., Sauceda, J.A., Wiebe, J.S., & Simoni, J.M. (2012). The role of prospective memory in medication adherence: A review of an emerging literature. Journal of Behavioral Medicine, 35(1), 47–62. doi: 10.1007/s10865-011-9341-9 CrossRef Google Scholar PubMed